Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2006, Article ID 79717, 35 pages
http://dx.doi.org/10.1155/DDNS/2006/79717

The Apollonian decay of beer foam bubble size distribution and the lattices of young diagrams and their correlated mixing functions

Institut für Angewandte und Physikalische Chemie–Arbeitsgruppe Chemische Synergetik, Universität Bremen, Bibliothekstraße NW 2, Bremen 28359, Germany

Received 4 August 2005; Accepted 3 October 2005

Copyright © 2006 S. Sauerbrei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Alberti and A. Uhlmann, Dissipative Motion in State Spaces, vol. 33 of Teubner-Texte zur Mathematik, BSB B. G. Teubner, Leipzig, 1981. View at Zentralblatt MATH · View at MathSciNet
  2. J. J. Bikerman, Foams, Springer, New York, 1973.
  3. D. W. Boyd, “Improved bounds for the disk-packing constant,” Aequationes Mathematicae, vol. 9, no. 1, pp. 99–106, 1973. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. D. W. Boyd, “The residual set dimension of the Apollonian packing,” Mathematika, vol. 20, pp. 170–174, 1973. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. I. N. Bronšteĭn and K. A. Semendjajew, Taschenbuch der Mathematik, Nauka, Moscow; BSB B. G. Teubner, Leipzig, 20th edition, 1981. View at Zentralblatt MATH · View at MathSciNet
  6. R. Brüggemann, N. Walz, M. Brauns, and W. Ostendorp, “Beitragsserie: Seeufer, ein vergessenes Ökoton, Beitrag 3,” UWST- Z. Umweltchemie Ökotox, vol. 16, no. 1, pp. 48–56, 2004. View at Google Scholar
  7. L. Burmester, “Geometrische Untersuchung der Theorie der Bewegung des Grundwassers im Gerölle und der Wasserfilterung durch Sand,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 4, no. 1, pp. 33–52, 1924. View at Google Scholar
  8. C. J. Dale, S. G. Walker, and A. Lyddiatt, “Dynamic changes in the composition and physical behaviour of dispensed beer foam,” Journal of the Institute of Brewing, vol. 99, pp. 461–466, 1993. View at Google Scholar
  9. L. Goldschlager and A. Lister, Informatik—Eine moderne Einführung, Carl Hanser, München, 1984. View at Zentralblatt MATH
  10. E. C. Haß, R. Ottensmeyer, and A. Wittstock, “Schaumcharakterisierung mit optischen Messtechniken und PC-gestützter Bildverarbeitung,” tm—Technisches Messen, vol. 71, no. 11, pp. 603–612, 2004 (German). View at Publisher · View at Google Scholar
  11. A. M. Jaglom and I. M. Jaglom, Wahrscheinlichkeit und Information, VEB Deutscher Verlag der Wissenschaften, Berlin, 4th edition, 1984. View at Zentralblatt MATH · View at MathSciNet
  12. E. T. Jaynes, “Information theory and statistical mechanics,” Physical Review, vol. 106, no. 4, pp. 620–630, 1957. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. E. T. Jaynes, “Information theory and statistical mechanics. II,” Physical Review, vol. 108, no. 2, pp. 171–190, 1957. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. A. Leike, “Demonstration of the exponential decay law using beer froth,” European Journal of Physics, vol. 23, no. 1, pp. 21–26, 2002. View at Publisher · View at Google Scholar
  15. B. B. Mandelbrot, Fractals: Form, Chance, and Dimension, W. H. Freeman, California, 1977. View at MathSciNet
  16. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, California, 1982. View at Zentralblatt MATH · View at MathSciNet
  17. B. B. Mandelbrot, Die fraktale Geometrie der Natur, Akademie, Berlin, 1987.
  18. E. Manegold, Kapillarsysteme. Bd. 1, Straßenbau, Chemie und Technik Verlagsgesellschaft mbH, Heidelberg, 1955.
  19. H. Meschkowski, Mathematisches Begriffswörterbuch, BI- Hochschultaschenbücher 99/99a, Bibliographisches Institut, Mannheim, 1965.
  20. Ch. Pöppe, “Kreispackungen,” Spektrum der Wissenschaften, vol. November, pp. 116–118, 2002. View at Google Scholar
  21. H. Rademacher, “On the partition function p(n),” Proceedings of the London Mathematical Society, Series 2, vol. 43, pp. 241–254, 1937. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. T. Rothmann and H. Fukagawa, “Sangaku: Japanische Geometrie,” Spektrum der Wissenschaften, vol. July, pp. 87–90, 1998. View at Google Scholar
  23. E. Ruch, “The diagram lattice as structural principle,” Theoretica Chimica Acta, vol. 38, no. 3, pp. 167–183, 1975. View at Publisher · View at Google Scholar · View at MathSciNet
  24. E. Ruch and B. Lesche, “Information extent and information distance,” The Journal of Chemical Physics, vol. 69, no. 1, pp. 393–401, 1978. View at Publisher · View at Google Scholar
  25. E. Ruch and A. Mead, “The principle of increasing mixing character and some of its consequences,” Theoretica Chimica Acta, vol. 41, no. 2, pp. 95–117, 1976. View at Publisher · View at Google Scholar
  26. E. Ruch and A. Schönhofer, “Theorie der Chiralitätsfunktionen,” Theoretica Chimica Acta, vol. 19, no. 3, pp. 225–287, 1970. View at Publisher · View at Google Scholar
  27. C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, pp. 379–423 and 623–656, 1948. View at Google Scholar · View at MathSciNet
  28. K. Simonyi, Kulturgeschichte der Physik, Urania, Leipzig, 1990.
  29. A. Uhlmann, “On the Shannon entropy and related functionals on convex sets,” Reports on Mathematical Physics, vol. 1, no. 2, pp. 147–159, 1970. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. E. W. Weisstein, “Partition Function P.,” From Mathworld—A Wolfram Web Resource, http://mathworld.wolfram.com/PartitionFunctionP.html.
  31. A. Young, “On quantitative substitutional analysis I,” Proceedings of the London Mathematical Society, vol. 33, pp. 97–146, 1901, See also: A. Young, On Quantitative Substitutional Analysis, The Collected Papers of Alfred Young 1873–1940, Mathematical Expositions no. 21, University of Toronto Press, Toronto and Buffalo, 1977, pp. 42–91., A. Young, On Quantitative Substitutional Analysis (Third Paper) (1927), The Collected Papers of Alfred Young 1873–1940, Mathematical Expositions no. 21, University of Toronto Press, Toronto and Buffalo, 1977, pp. 352–389. View at Publisher · View at Google Scholar
  32. A. Young, The Collected Papers of Alfred Young (1873–1940), Mathematical Expositions, no. 21, University of Toronto Press, Ontario, 1977, With a foreword by G. de B. Robinson and a biography by H. W. Turnbull. View at Zentralblatt MATH · View at MathSciNet