Abstract

We study the dynamic behaviors of a general discrete nonautonomous system of plankton allelopathy with delays. We first show that under some suitable assumption, the system is permanent. Next, by constructing a suitable Lyapunov functional, we obtain a set of sufficient conditions which guarantee the global attractivity of the two species. After that, by constructing an extinction-type Lyapunov functional, we show that under some suitable assumptions, one species will be driven to extinction. Finally, two examples together with their numerical simulations show the feasibility of the main results.

1. Introduction

The aim of this paper is to investigate the dynamic behaviors of the following general discrete nonautonomous system of plankton allelopathy with delay: 𝑁1(π‘˜+1)=𝑁1(π‘˜)exp[π‘Ÿ1(π‘˜)βˆ’π‘šξ“π‘™=0π‘Ž1𝑙(π‘˜)𝑁1(π‘˜βˆ’π‘™)βˆ’π‘šξ“π‘™=0𝑏1𝑙(π‘˜)𝑁2βˆ’(π‘˜βˆ’π‘™)π‘šξ“π‘™=0𝑐1𝑙(π‘˜)𝑁1(π‘˜)𝑁2𝑁(π‘˜βˆ’π‘™)],2(π‘˜+1)=𝑁2(π‘˜)exp[π‘Ÿ2(π‘˜)βˆ’π‘šξ“π‘™=0π‘Ž2𝑙(π‘˜)𝑁2(π‘˜βˆ’π‘™)βˆ’π‘šξ“π‘™=0𝑏2𝑙(π‘˜)𝑁1βˆ’(π‘˜βˆ’π‘™)π‘šξ“π‘™=0𝑐2𝑙(π‘˜)𝑁2(π‘˜)𝑁1(π‘˜βˆ’π‘™)](1.1)together with the initial condition𝑁𝑖(βˆ’π‘™)β‰₯0,𝑁𝑖(0)>0,𝑖=1,2;𝑙=0,1,…,π‘š,(1.2)where π‘š is a positive integer, 𝑁𝑖(π‘˜) represent the densities of population 𝑖 at the π‘˜th generation, π‘Ÿπ‘–(π‘˜) are the intrinsic growth rate of population 𝑖 at the π‘˜th generation, π‘Žπ‘–π‘™(π‘˜) measure the intraspecific influence of the (π‘˜βˆ’π‘™)th generation of population 𝑖 on the density of own population, 𝑏𝑖𝑙(π‘˜) stand for the interspecific influence of the (π‘˜βˆ’π‘™)th generation of population 𝑖 on the density of own population, and 𝑐𝑖𝑙(π‘˜) stand for the effect of toxic inhibition of population 𝑖 by population 𝑗 at the (π‘˜βˆ’π‘™)th generation, 𝑖,𝑗=1,2 and 𝑖≠𝑗. Also, {π‘Ÿπ‘–(π‘˜)},{π‘Žπ‘–π‘™(π‘˜)},{𝑏𝑖𝑙(π‘˜)} and {𝑐𝑖𝑙(π‘˜)} are all bounded nonnegative sequences defined for π‘˜βˆˆπ‘, denoted by the set of all nonnegative integers, and π‘™βˆˆ{0,1,…,π‘š} such that0<π‘ŸπΏπ‘–β‰€π‘Ÿπ‘–(π‘˜)β‰€π‘Ÿπ‘€π‘–,0<π‘ŽπΏπ‘–π‘™β‰€π‘Žπ‘–π‘™(π‘˜)β‰€π‘Žπ‘€π‘–π‘™,0<𝑏𝐿𝑖𝑙≀𝑏𝑖𝑙(π‘˜)≀𝑏𝑀𝑖𝑙,0<𝑐𝐿𝑖𝑙≀𝑐𝑖𝑙(π‘˜)≀𝑐𝑀𝑖𝑙,(1.3)here, for any bounded sequence {𝑓(π‘˜)}, define𝑓𝑀=supπ‘˜βˆˆπ‘π‘“(π‘˜),𝑓𝐿=infπ‘˜βˆˆπ‘π‘“(π‘˜).(1.4)

As was pointed out by Chattopadhyay [1] the effects of toxic substances on ecological communities are an important problem from an environmental point of view. Chattopadhyay [1] and Maynard-Smith [2] proposed the following two species Lotka-Volterra competition system, which describes the changes of size and density of phytoplankton:𝑑π‘₯1(𝑑)𝑑𝑑=π‘₯1ξ‚ƒπ‘Ÿ(𝑑)1βˆ’π‘Ž11π‘₯1(𝑑)βˆ’π‘Ž12π‘₯2(𝑑)βˆ’π‘1π‘₯1(𝑑)π‘₯2ξ‚„,(𝑑)𝑑π‘₯2(𝑑)𝑑𝑑=π‘₯2ξ‚ƒπ‘Ÿ(𝑑)2βˆ’π‘Ž21π‘₯1(𝑑)βˆ’π‘Ž22π‘₯2(𝑑)βˆ’π‘2π‘₯1(𝑑)π‘₯2ξ‚„,(𝑑)(1.5)where π‘₯1(𝑑) and π‘₯2(𝑑) denote the population density of two competing species at time 𝑑 for a common pool of resources. The terms 𝑏1π‘₯1(𝑑)π‘₯2(𝑑) and 𝑏2π‘₯1(𝑑)π‘₯2(𝑑) denote the effect of toxic substances. Here, they made the assumption that each species produces a substance toxic to the other, only when the other is present. Noticing that the production of the toxic substance allelopathic to the competing species will not be instantaneous, but delayed by different discrete time lags required for the maturity of both species, thus, Mukhopadhyay et al. [3] also incorporated the discrete time delay into the above system. Tapaswi and Mukhopadhyay [4] also studied a two-dimensional system that arises in plankton allelopathy involving discrete time delays and environmental fluctuations. They assumed that the environmental parameters are assumed to be perturbed by white noise characterized by a Gaussian distribution with mean zero and unit spectral density. They focus on the dynamic behavior of the stochastic system and the fluctuations in population. For more works on system (1.5), one could refer to [1–3, 5–24] and the references cited therein.

Since the discrete time models governed by difference equations are more appropriate than the continuous ones when the populations have nonoverlapping generations, and discrete time models can also provide efficient computational models of continuous models for numerical simulations, corresponding to system (1.5), Huo and Li [25] argued that it is necessary to study the following discrete two species competition system:π‘₯1(π‘˜+1)=π‘₯1ξ‚ƒπ‘Ÿ(π‘˜)exp1(π‘˜)βˆ’π‘Ž11(π‘˜)π‘₯1(π‘˜)βˆ’π‘Ž12(π‘˜)π‘₯2(π‘˜)βˆ’π‘1(π‘˜)π‘₯1(π‘˜)π‘₯2ξ‚„,π‘₯(π‘˜)2(π‘˜+1)=π‘₯2ξ‚ƒπ‘Ÿ(π‘˜)exp2(π‘˜)βˆ’π‘Ž21(π‘˜)π‘₯1(π‘˜)βˆ’π‘Ž22(π‘˜)π‘₯2(π‘˜)βˆ’π‘2(π‘˜)π‘₯1(π‘˜)π‘₯2ξ‚„,(π‘˜)(1.6)where π‘₯1(π‘˜) and π‘₯2(π‘˜) are the population sizes of the two competitors at generation π‘˜,𝑏1(π‘˜) and 𝑏2(π‘˜) have respectively, shown that each species produces a toxic substance to the other but the other only is present. In [25], sufficient conditions were obtained to guarantee the permanence of the above system, they also investigated the existence and stability property of the positive periodic solution of system (1.6). Recently, Li and Chen [26] further investigated the dynamic behaviors of the system (1.6). For general nonatonomous case, they obtain a set of sufficient conditions which guarantee the extinction of species π‘₯2 and the global stability of species π‘₯1 when species π‘₯2 is eventually extinct. For periodic case, the other set of sufficient conditions, which concerned with the average condition of the coefficients of he system, were obtained to ensure the eventual extinction of species π‘₯2 and the global stability of positive periodic solution of species π‘₯1 when species π‘₯2 is eventually extinct. For more works on discrete population dynamics, one could refer to [7, 10, 25–45].

Liu and Chen [32] argued that for a more realistic model, both seasonality of the changing environment and some of the past states, that is, the effects of time delays, should be taken into account in a model of multiple species growth. They proposed and studied the system (1.1), which is more general than system (1.6). By applying the coincidence degree theory, they obtained a set of sufficient conditions for the existence of at least one positive periodic solution of system (1.1)-(1.2). Zhang and Fang [46] also investigated the periodic solution of the system (1.1), they showed that under some suitable assumption, system (1.1) could admit at least two positive periodic solution. As we can see, the works [32, 46] are all concerned with the positive periodic solution of the system. However, since few things in the nature are really periodic, it is nature to study the general nonautonomous system (1.1), in this case, it is impossible to study the periodic solution of the system, however, such topics as permanence, extinction, and stability become the most important things. In this paper, we will further investigate the dynamics behaviors of the system (1.1). More precisely, by developing the analysis technique of Liu [31] and Muroya [35, 36], we study the permanence, global attractivity and extinction of system (1.1)-(1.2).

The organization of this paper is as follows. We study the persistence property of the system in Section 2 and the stability property in Section 3. Then in Section 4, by constructing a suitable Lyapunov functional, sufficient conditions which ensure the extinction of species 𝑁2 of system (1.1)-(1.2) are studied. In Section 5, two examples together with their numeric simulations show the feasibility of main results. For more relevant works, one could refer to [2, 3, 5–9, 12, 13, 27–30, 33, 34, 37–45] and the references cited therein.

2. Permanence

In this section, we study the persistent property of system (1.1)-(1.2).

Lemma 2.1. For any positive solution {(𝑁1(π‘˜),𝑁2(π‘˜))} of system (1.1)-(1.2), limsupπ‘˜β†’βˆžπ‘π‘–(π‘˜)≀𝐡𝑖,𝑖=1,2,(2.1)where 𝐡𝑖def=ξ‚€π‘Ÿexpπ‘€π‘–ξ‚βˆ’1π‘ŽπΏπ‘–0,𝑖=1,2.(2.2)

Proof. Let {(𝑁1(π‘˜),𝑁2(π‘˜))} be any positive solution of system (1.1)-(1.2), in view of the system (1.1) for all π‘˜βˆˆπ‘, we have𝑁𝑖(π‘˜+1)β‰€π‘π‘–ξ‚ƒπ‘Ÿ(π‘˜)exp𝑖(π‘˜)βˆ’π‘Žπ‘–0(π‘˜)𝑁𝑖(π‘˜),𝑖=1,2.(2.3)Applying Lemma 2.1 of Yang [44] to (2.3), we can obtainlimsupπ‘˜β†’βˆžπ‘π‘–ξ‚€π‘Ÿ(π‘˜)≀expπ‘€π‘–ξ‚βˆ’1π‘ŽπΏπ‘–0def=𝐡𝑖,𝑖=1,2.(2.4)This completes the proof of Lemma 2.1.

Lemma 2.2. Assume that Ξ”11def=π‘ŸπΏ1βˆ’π‘šξ“π‘™=1π‘Žπ‘€1𝑙𝐡1βˆ’π‘šξ“π‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡2Ξ”>0,21def=π‘ŸπΏ2βˆ’π‘šξ“π‘™=1π‘Žπ‘€2𝑙𝐡2βˆ’π‘šξ“π‘™=0𝑏𝑀2𝑙+𝑐𝑀2𝑙𝐡2𝐡1>0(2.5)hold, where 𝐡1 and 𝐡2 are defined in (2.2). Then for any positive solution {(𝑁1(π‘˜),𝑁2(π‘˜))} of system (1.1)-(1.2), liminfπ‘˜β†’βˆžπ‘π‘–(π‘˜)β‰₯𝐴𝑖,𝑖=1,2,(2.6)where 𝐴𝑖=Δ𝑖1π‘Žπ‘€π‘–0exp[Δ𝑖2Ξ”],𝑖=1,2,12=π‘ŸπΏ1βˆ’π‘šξ“π‘™=0π‘Žπ‘€1𝑙𝐡1βˆ’π‘šξ“π‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡2,Ξ”22=π‘ŸπΏ2βˆ’π‘šξ“π‘™=0π‘Žπ‘€2𝑙𝐡2βˆ’π‘šξ“π‘™=0𝑏𝑀2𝑙+𝑐𝑀2𝑙𝐡2𝐡1.(2.7)

Proof. In view of (2.5), we can choose a constant πœ€>0 small enough such thatπ‘ŸπΏ1βˆ’π‘šξ“π‘™=1π‘Žπ‘€1𝑙𝐡1ξ‚βˆ’+πœ€π‘šξ“π‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡+πœ€ξ‚ξ‚„ξ‚€2ξ‚π‘Ÿ+πœ€>0,(2.8)𝐿2βˆ’π‘šξ“π‘™=1π‘Žπ‘€2𝑙𝐡2ξ‚βˆ’+πœ€π‘šξ“π‘™=0𝑏𝑀2𝑙+𝑐𝑀2𝑙𝐡2𝐡+πœ€ξ‚ξ‚„ξ‚€1+πœ€>0.(2.9)πœ€>0,In view of (2.1), for above π‘˜0βˆˆπ‘ there exists an integer 𝑁𝑖(π‘˜)≀𝐡𝑖+πœ€βˆ€π‘˜β‰₯π‘˜0,𝑖=1,2.(2.10) such that𝑙0β‰₯π‘˜0+π‘šWe consider the following two cases.
Case (i). We assume that there exists an integer 𝑁1(𝑙0+1)≀𝑁1(𝑙0). such that 𝑁1𝑙0+1=𝑁1𝑙0exp[π‘Ÿ1𝑙0ξ‚βˆ’π‘šξ“π‘™=0π‘Ž1𝑙𝑙0𝑁1𝑙0ξ‚βˆ’βˆ’π‘™π‘šξ“π‘™=0𝑏1𝑙𝑙0𝑁2𝑙0ξ‚βˆ’βˆ’π‘™π‘šξ“π‘™=0𝑐1𝑙𝑙0𝑁1𝑙0𝑁2𝑙0]βˆ’π‘™β‰₯𝑁1𝑙0exp{π‘ŸπΏ1βˆ’π‘šξ“π‘™=1π‘Žπ‘€1𝑙𝐡1ξ‚βˆ’+πœ€π‘šξ“π‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡+πœ€ξ‚ξ‚„ξ‚€2+πœ€βˆ’π‘Žπ‘€10𝑁1𝑙0}.(2.11) Note thatπ‘ŸπΏ1βˆ’π‘šξ“π‘™=1π‘Žπ‘€1𝑙𝐡1ξ‚βˆ’+πœ€π‘šξ“π‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡+πœ€ξ‚ξ‚„ξ‚€2+πœ€βˆ’π‘Žπ‘€10𝑁1𝑙0≀0.(2.12)So we can obtain𝑁1𝑙0β‰₯π‘ŸπΏ1βˆ’βˆ‘π‘šπ‘™=1π‘Žπ‘€1𝑙𝐡1ξ‚βˆ’βˆ‘+πœ€π‘šπ‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡+πœ€ξ‚ξ‚„ξ‚€2+πœ€π‘Žπ‘€10>0.(2.13)It follows from (2.8) that𝑁1𝑙0β‰₯π‘Ÿ+1𝐿1βˆ’βˆ‘π‘šπ‘™=1π‘Žπ‘€1𝑙𝐡1ξ‚βˆ’βˆ‘+πœ€π‘šπ‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡+πœ€ξ‚ξ‚„ξ‚€2+πœ€π‘Žπ‘€10Γ—exp{π‘ŸπΏ1βˆ’π‘šξ“π‘™=0π‘Žπ‘€1𝑙𝐡1ξ‚βˆ’+πœ€π‘šξ“π‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡+πœ€ξ‚ξ‚„ξ‚€2+πœ€}.(2.14)Then we have𝑁1πœ€=π‘ŸπΏ1βˆ’βˆ‘π‘šπ‘™=1π‘Žπ‘€1𝑙𝐡1ξ‚βˆ’βˆ‘+πœ€π‘šπ‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡+πœ€ξ‚ξ‚„ξ‚€2+πœ€π‘Žπ‘€10Γ—exp{π‘ŸπΏ1βˆ’π‘šξ“π‘™=0π‘Žπ‘€1𝑙𝐡1ξ‚βˆ’+πœ€π‘šξ“π‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡+πœ€ξ‚ξ‚„ξ‚€2+πœ€}.(2.15)Let𝐡1=ξ‚€π‘Ÿexp𝑀1ξ‚βˆ’1π‘ŽπΏ10β‰₯π‘Ÿπ‘€1π‘ŽπΏ10β‰₯π‘ŸπΏ1π‘Žπ‘€10,(2.16)Note thatπ‘ŸπΏ1βˆ’π‘Žπ‘€10𝐡1≀0,thus πœ€>0, and so, for above π‘ŸπΏ1βˆ’π‘šξ“π‘™=0π‘Žπ‘€1𝑙𝐡1ξ‚βˆ’+πœ€π‘šξ“π‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡+πœ€ξ‚ξ‚„ξ‚€2+πœ€<π‘ŸπΏ1βˆ’π‘Žπ‘€10𝐡1+πœ€<π‘ŸπΏ1βˆ’π‘Žπ‘€10𝐡1≀0(2.17)π‘ŸπΏ1βˆ’βˆ‘π‘šπ‘™=1π‘Žπ‘€1𝑙𝐡1ξ‚βˆ’βˆ‘+πœ€π‘šπ‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡+πœ€ξ‚ξ‚„ξ‚€2+πœ€π‘Žπ‘€10β‰₯𝑁1πœ€.(2.18)or𝑁1(π‘˜)β‰₯𝑁1πœ€βˆ€π‘˜β‰₯𝑙0.(2.19)
We can claim that𝑝0β‰₯𝑙0By way of contradiction, assume that there exists an integer 𝑁1(𝑝0)<𝑁1πœ€. such that 𝑝0β‰₯𝑙0+2. Then 𝑝0β‰₯𝑙0+2 Let 𝑁1(𝑝0)<𝑁1πœ€. be the smallest integer such that 𝑁1(𝑝0βˆ’1)>𝑁1(𝑝0). Then 𝑁1(𝑝0)β‰₯𝑁1πœ€, The above argument produces that 𝑁1(π‘˜+1)>𝑁1(π‘˜) a contradiction. Thus (2.19) proved.
Case (ii). We assume that π‘˜β‰₯π‘˜0+π‘š, for all limπ‘˜β†’βˆžπ‘1(π‘˜) then 𝑁1. exists, denoted by 𝑁1β‰₯π‘ŸπΏ1βˆ’βˆ‘π‘šπ‘™=1π‘Žπ‘€1𝑙𝐡1ξ‚βˆ’βˆ‘+πœ€π‘šπ‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡+πœ€ξ‚ξ‚„ξ‚€2+πœ€π‘Žπ‘€10.(2.20) We can claim that𝑁1<π‘ŸπΏ1βˆ’βˆ‘π‘šπ‘™=1π‘Žπ‘€1𝑙𝐡1ξ‚βˆ’βˆ‘+πœ€π‘šπ‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡+πœ€ξ‚ξ‚„ξ‚€2+πœ€π‘Žπ‘€10.(2.21)By the way of contradiction, assume thatlimπ‘˜β†’βˆž[π‘Ÿ1(π‘˜)βˆ’π‘šξ“π‘™=0π‘Ž1𝑙(π‘˜)𝑁1(π‘˜βˆ’π‘™)βˆ’π‘šξ“π‘™=0𝑏1𝑙(π‘˜)𝑁2(π‘˜βˆ’π‘™)βˆ’π‘šξ“π‘™=0𝑐1𝑙(π‘˜)𝑁1(π‘˜)𝑁2(π‘˜βˆ’π‘™)]=0,(2.22)Taking limit in the first equation of (1.1) giveslimπ‘˜β†’βˆž[π‘Ÿ1(π‘˜)βˆ’π‘šξ“π‘™=0π‘Ž1𝑙(π‘˜)𝑁1(π‘˜βˆ’π‘™)βˆ’π‘šξ“π‘™=0𝑏1𝑙(π‘˜)𝑁2(π‘˜βˆ’π‘™)βˆ’π‘šξ“π‘™=0𝑐1𝑙(π‘˜)𝑁1(π‘˜)𝑁2(π‘˜βˆ’π‘™)]β‰₯π‘ŸπΏ1βˆ’π‘šξ“π‘™=1π‘Žπ‘€1𝑙𝐡1+πœ€βˆ’π‘Žπ‘€10𝑁1βˆ’π‘šξ“π‘™=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡+πœ€ξ‚ξ‚„ξ‚€2+πœ€>0.(2.23)which is a contradiction since𝑁1β‰₯𝑁1πœ€.(2.24)The claim is thus proved.
From (2.20), we see thatliminfπ‘˜β†’βˆžπ‘1(π‘˜)β‰₯𝑁1πœ€.(2.25)Combining Cases (i) and (ii), we see thatπœ€β†’0,Setting limπœ€β†’0𝑁1πœ€=Ξ”11π‘Žπ‘€10Δexp12def=𝐴1.(2.26) it follows thatliminfπ‘˜β†’βˆžπ‘1(π‘˜)β‰₯𝐴1.(2.27)
So we can easily see thatliminfπ‘˜β†’βˆžπ‘2(π‘˜)β‰₯𝐴2,(2.28)From the second equation of (1.1), similar to above analysis, we have𝐴2where πœ‚>0 is defined in (2.6). This completes the proof of Lemma 2.2.

It immediately follows from Lemmas 2.1 and 2.2 that the following theorem holds.

Theorem 2.3. Assume that (2.5) hold, then system (1.1)-(1.2) is permanent.

3. Global attractivity

This section devotes to study the stability property of the positive solution of system (1.1)-(1.2).

Theorem 3.1. Assume that there exists a constant ξ‚†π‘Žmin𝐿𝑖0,2π΅π‘–βˆ’π‘Žπ‘€π‘–0ξ‚‡βˆ’2𝑗=1,𝑗≠𝑖[π‘šξ“π‘™=1π‘Žπ‘€π‘–π‘™ξ‚€π‘+(π‘š+1)𝑀𝑗+2𝐡𝑗𝑐𝑀]>πœ‚,𝑖=1,2,(H0) such that 𝑖,𝑗=1,2,𝑖≠𝑗,𝐡𝑖where, for 𝐡𝑗 and 𝑏𝑀𝑗𝑏=maxπ‘€π‘—π‘™ξ‚‡βˆΆπ‘™=0,1,…,π‘š,𝑐𝑀𝑖𝑐=max𝑀𝑖𝑙,π‘βˆΆπ‘™=0,1,…,π‘šπ‘€ξ‚†π‘=max𝑀𝑖,βˆΆπ‘–=1,2(3.1) are defined in (2.2), {(𝑁1(π‘˜),𝑁2(π‘˜))}then for any two positive solutions {(π‘βˆ—1(π‘˜),π‘βˆ—2(π‘˜))} and limπ‘˜β†’βˆžξ‚€π‘π‘–(π‘˜)βˆ’π‘βˆ—π‘–ξ‚(π‘˜)=0,𝑖=1,2.(3.2) of system (1.1)-(1.2), 𝑉11|||(π‘˜)=ln𝑁1(π‘˜)βˆ’lnπ‘βˆ—1|||(π‘˜).(3.3)

Proof. First, let𝑉11|||(π‘˜+1)=ln𝑁1(π‘˜+1)βˆ’lnπ‘βˆ—1|||≀|||(π‘˜+1)ln𝑁1(π‘˜)βˆ’lnπ‘βˆ—1(π‘˜)βˆ’π‘Ž10𝑁(π‘˜)1(π‘˜)βˆ’π‘βˆ—1ξ‚„|||+(π‘˜)π‘šξ“π‘™=1π‘Ž1𝑙|||𝑁(π‘˜)1(π‘˜βˆ’π‘™)βˆ’π‘βˆ—1|||+(π‘˜βˆ’π‘™)π‘šξ“π‘™=0𝑏1𝑙|||𝑁(π‘˜)2(π‘˜βˆ’π‘™)βˆ’π‘βˆ—2|||+(π‘˜βˆ’π‘™)π‘šξ“π‘™=0𝑐1𝑙|||𝑁(π‘˜)1(π‘˜)𝑁2(π‘˜βˆ’π‘™)βˆ’π‘βˆ—1(π‘˜)π‘βˆ—2|||.(π‘˜βˆ’π‘™)(3.4)Then from the first equation of (1.1), we have|||ln𝑁1(π‘˜)βˆ’lnπ‘βˆ—1|||=1(π‘˜)πœƒ1|||𝑁(π‘˜)1(π‘˜)βˆ’π‘βˆ—1|||(π‘˜),(3.5)Noticing that by mean-value theory0<πœƒ1(π‘˜)≀max{𝑁1(π‘˜),π‘βˆ—1(π‘˜)}.where |||ln𝑁1(π‘˜)βˆ’lnπ‘βˆ—1(π‘˜)βˆ’π‘Ž10𝑁(π‘˜)1(π‘˜)βˆ’π‘βˆ—1ξ‚„|||=|||(π‘˜)ln𝑁1(π‘˜)βˆ’lnπ‘βˆ—1|||βˆ’|||(π‘˜)ln𝑁1(π‘˜)βˆ’lnπ‘βˆ—1|||+|||(π‘˜)ln𝑁1(π‘˜)βˆ’lnπ‘βˆ—1(π‘˜)βˆ’π‘Ž10𝑁(π‘˜)1(π‘˜)βˆ’π‘βˆ—1ξ‚„|||=|||(π‘˜)ln𝑁1(π‘˜)βˆ’lnπ‘βˆ—1|||βˆ’ξ‚€1(π‘˜)πœƒ1βˆ’|||1(π‘˜)πœƒ1(π‘˜)βˆ’π‘Ž10||||||𝑁(π‘˜)1(π‘˜)βˆ’π‘βˆ—1|||.(π‘˜)(3.6) Then𝑉11|||(π‘˜+1)≀ln𝑁1(π‘˜)βˆ’lnπ‘βˆ—1|||βˆ’ξ‚€1(π‘˜)πœƒ1βˆ’|||1(π‘˜)πœƒ1(π‘˜)βˆ’π‘Ž10||||||𝑁(π‘˜)1(π‘˜)βˆ’π‘βˆ—1|||+(π‘˜)π‘šξ“π‘™=1π‘Ž1𝑙|||𝑁(π‘˜)1(π‘˜βˆ’π‘™)βˆ’π‘βˆ—1|||+(π‘˜βˆ’π‘™)π‘šξ“π‘™=0𝑏1𝑙|||𝑁(π‘˜)2(π‘˜βˆ’π‘™)βˆ’π‘βˆ—2|||+(π‘˜βˆ’π‘™)π‘šξ“π‘™=0𝑐1𝑙|||𝑁(π‘˜)1(π‘˜)𝑁2(π‘˜βˆ’π‘™)βˆ’π‘βˆ—1(π‘˜)π‘βˆ—2|||.(π‘˜βˆ’π‘™)(3.7)Substituting (3.6) into (3.4) leads toΔ𝑉11ξ‚€1β‰€βˆ’πœƒ1βˆ’|||1(π‘˜)πœƒ1(π‘˜)βˆ’π‘Ž10||||||𝑁(π‘˜)1(π‘˜)βˆ’π‘βˆ—1|||+(π‘˜)π‘šξ“π‘™=1π‘Ž1𝑙|||𝑁(π‘˜)1(π‘˜βˆ’π‘™)βˆ’π‘βˆ—1|||+(π‘˜βˆ’π‘™)π‘šξ“π‘™=0𝑏1𝑙|||𝑁(π‘˜)2(π‘˜βˆ’π‘™)βˆ’π‘βˆ—2|||+(π‘˜βˆ’π‘™)π‘šξ“π‘™=0𝑐1𝑙|||𝑁(π‘˜)1(π‘˜)𝑁2(π‘˜βˆ’π‘™)βˆ’π‘βˆ—1(π‘˜)π‘βˆ—2|||.(π‘˜βˆ’π‘™)(3.8)So it follows thatπœ€>0,According to (2.1), for any constant π‘˜0βˆˆπ‘ there exists an integer 𝑁1(π‘˜)≀𝐡1+πœ€,𝑁2(π‘˜)≀𝐡2+πœ€βˆ€π‘˜β‰₯π‘˜0.(3.9) such thatπ‘˜β‰₯π‘˜0+π‘š,𝑙=0,1,…,π‘š,So for all |||𝑁1(π‘˜)𝑁2(π‘˜βˆ’π‘™)βˆ’π‘βˆ—1(π‘˜)π‘βˆ—2|||=|||𝑁(π‘˜βˆ’π‘™)1(π‘˜)𝑁2(π‘˜βˆ’π‘™)βˆ’π‘1(π‘˜)π‘βˆ—2(π‘˜βˆ’π‘™)+𝑁1(π‘˜)π‘βˆ—2(π‘˜βˆ’π‘™)βˆ’π‘βˆ—1(π‘˜)π‘βˆ—2|||=|||𝑁(π‘˜βˆ’π‘™)1𝑁(π‘˜)2(π‘˜βˆ’π‘™)βˆ’π‘βˆ—2ξ‚„(π‘˜βˆ’π‘™)+π‘βˆ—2𝑁(π‘˜βˆ’π‘™)1(π‘˜)βˆ’π‘βˆ—1ξ‚„|||≀𝐡(π‘˜)1|||𝑁+πœ€2(π‘˜βˆ’π‘™)βˆ’π‘βˆ—2|||+𝐡(π‘˜βˆ’π‘™)2|||𝑁+πœ€1(π‘˜)βˆ’π‘βˆ—1|||.(π‘˜)(3.10) it follows thatπ‘˜β‰₯π‘˜0+π‘š,So for all Δ𝑉111β‰€βˆ’(πœƒ1βˆ’|||1(π‘˜)πœƒ1(π‘˜)βˆ’π‘Ž10|||βˆ’(π‘˜)π‘šξ“π‘™=0𝐡2𝑐+πœ€1𝑙|||𝑁(π‘˜))1(π‘˜)βˆ’π‘βˆ—1|||+(π‘˜)π‘šξ“π‘™=1π‘Ž1𝑙|||𝑁(π‘˜)1(π‘˜βˆ’π‘™)βˆ’π‘βˆ—1|||+(π‘˜βˆ’π‘™)π‘šξ“π‘™=0𝑏1𝑙𝐡(π‘˜)+1𝑐+πœ€1𝑙|||𝑁(π‘˜)2(π‘˜βˆ’π‘™)βˆ’π‘βˆ—2|||.(π‘˜βˆ’π‘™)(3.11) it follows from (3.4) that𝑉12(π‘˜)=π‘šξ“π‘™=1π‘˜βˆ’1𝑠=π‘˜βˆ’π‘™π‘Ž1𝑙|||𝑁(𝑠+𝑙)1(𝑠)βˆ’π‘βˆ—1|||+(𝑠)π‘šξ“π‘™=0π‘˜βˆ’1𝑠=π‘˜βˆ’π‘™ξ‚ƒπ‘1𝑙𝐡(𝑠+𝑙)+1𝑐+πœ€1𝑙|||𝑁(𝑠+𝑙)2(𝑠)βˆ’π‘βˆ—2|||,(𝑠)(3.12)Next, letΔ𝑉12=𝑉12(π‘˜+1)βˆ’π‘‰12=(π‘˜)π‘šξ“π‘˜π‘™=1𝑠=π‘˜+1βˆ’π‘™π‘Ž1𝑙|||𝑁(𝑠+𝑙)1(𝑠)βˆ’π‘βˆ—1|||βˆ’(𝑠)π‘šξ“π‘™=1π‘˜βˆ’1𝑠=π‘˜βˆ’π‘™π‘Ž1𝑙|||𝑁(𝑠+𝑙)1(𝑠)βˆ’π‘βˆ—1|||+(𝑠)π‘šξ“π‘˜π‘™=0𝑠=π‘˜+1βˆ’π‘™ξ‚ƒπ‘1𝑙𝐡(𝑠+𝑙)+1𝑐+πœ€1𝑙|||𝑁(𝑠+𝑙)2(𝑠)βˆ’π‘βˆ—2|||βˆ’(𝑠)π‘šξ“π‘™=0π‘˜βˆ’1𝑠=π‘˜βˆ’π‘™ξ‚ƒπ‘1𝑙𝐡(𝑠+𝑙)+1𝑐+πœ€1𝑙|||𝑁(𝑠+𝑙)2(𝑠)βˆ’π‘βˆ—2|||=(𝑠)π‘šξ“π‘™=1π‘Ž1𝑙|||𝑁(π‘˜+𝑙)1(π‘˜)βˆ’π‘βˆ—|||βˆ’(π‘˜)π‘šξ“π‘™=1π‘Ž1𝑙|||𝑁(π‘˜)1(π‘˜βˆ’π‘™)βˆ’π‘βˆ—1|||+(π‘˜βˆ’π‘™)π‘šξ“π‘™=0𝑏1𝑙𝐡(π‘˜+𝑙)+1𝑐+πœ€1𝑙|||𝑁(π‘˜+𝑙)2(π‘˜)βˆ’π‘βˆ—2|||βˆ’(π‘˜)π‘šξ“π‘™=0𝑏1𝑙𝐡(π‘˜)+1𝑐+πœ€1𝑙|||𝑁(π‘˜)2(π‘˜βˆ’π‘™)βˆ’π‘βˆ—2|||.(π‘˜βˆ’π‘™)(3.13)and we can obtain𝑉1Now, we define 𝑉1(π‘˜)=𝑉11(π‘˜)+𝑉12(π‘˜).(3.14) byπ‘˜β‰₯π‘˜0+π‘š,So for all Δ𝑉1=Δ𝑉11+Δ𝑉121β‰€βˆ’(πœƒ1βˆ’|||1(π‘˜)πœƒ1(π‘˜)βˆ’π‘Ž10|||βˆ’(π‘˜)π‘šξ“π‘™=0𝐡2𝑐+πœ€1𝑙(π‘˜)βˆ’π‘šξ“π‘™=1π‘Ž1𝑙|||𝑁(π‘˜+𝑙))1(π‘˜)βˆ’π‘βˆ—1|||+(π‘˜)π‘šξ“π‘™=0𝑏1𝑙𝐡(π‘˜+𝑙)+1𝑐+πœ€1𝑙|||𝑁(π‘˜+𝑙)2(π‘˜)βˆ’π‘βˆ—2|||.(π‘˜)(3.15) it follows from (3.6) and (3.9) that𝑉2(π‘˜)=𝑉21(π‘˜)+𝑉22(π‘˜),(3.16)Similar to above arguments, we can define𝑉21|||(π‘˜)=ln𝑁2(π‘˜)βˆ’lnπ‘βˆ—2|||,𝑉(π‘˜)22(π‘˜)=π‘šξ“π‘™=1π‘˜βˆ’1𝑠=π‘˜βˆ’π‘™π‘Ž2𝑙|||𝑁(𝑠+𝑙)2(𝑠)βˆ’π‘βˆ—2|||+(𝑠)π‘šξ“π‘™=0π‘˜βˆ’1𝑠=π‘˜βˆ’π‘™ξ‚ƒπ‘2𝑙𝐡(𝑠+𝑙)+2𝑐+πœ€2𝑙|||𝑁(𝑠+𝑙)1(𝑠)βˆ’π‘βˆ—1|||.(𝑠)(3.17)whereπ‘˜β‰₯π‘˜0+π‘š,Then for all Δ𝑉2=Δ𝑉21+Δ𝑉221β‰€βˆ’(πœƒ2βˆ’|||1(π‘˜)πœƒ2(π‘˜)βˆ’π‘Ž20|||βˆ’(π‘˜)π‘šξ“π‘™=0𝐡1𝑐+πœ€2𝑙(π‘˜)βˆ’π‘šξ“π‘™=1π‘Ž2𝑙|||𝑁(π‘˜+𝑙))2(π‘˜)βˆ’π‘βˆ—2|||+(π‘˜)π‘šξ“π‘™=0𝑏2𝑙𝐡(π‘˜+𝑙)+2𝑐+πœ€2𝑙|||𝑁(π‘˜+𝑙)1(π‘˜)βˆ’π‘βˆ—1|||,(π‘˜)(3.18) we can obtainπœƒ2(π‘˜)where 𝑁2(π‘˜) lies between π‘βˆ—2(π‘˜). and 𝑉
Now, we define 𝑉(π‘˜)=𝑉1(π‘˜)+𝑉2(π‘˜).(3.19) by𝑉(π‘˜)β‰₯0It is easy to see that π‘˜βˆˆπ‘ for all 𝑉(π‘˜0+π‘š)<+∞. and πœ€>0 For the arbitrariness of πœ€>0 and by (H0), we can choose 𝑖=1,2, small enough such that for ξ‚†π‘Žmin𝐿𝑖0,2𝐡𝑖+πœ€βˆ’π‘Žπ‘€π‘–0ξ‚‡βˆ’2𝑗=1,𝑗≠𝑖[π‘šξ“π‘™=1π‘Žπ‘–π‘™ξ‚€π‘(π‘˜+𝑙)+(π‘š+1)𝑀𝑗𝐡+2𝑗𝑐+πœ€π‘€ξ‚]>πœ‚.(3.20)π‘˜β‰₯π‘˜0+π‘š,So for all Ξ”π‘‰β‰€βˆ’2𝑖=1{1πœƒπ‘–βˆ’|||1(π‘˜)πœƒπ‘–(π‘˜)βˆ’π‘Žπ‘–0|||βˆ’(π‘˜)2𝑗=1,𝑗≠𝑖[π‘šξ“π‘™=1π‘Žπ‘–π‘™(π‘˜+𝑙)+π‘šξ“π‘™=0𝑏𝑗𝑙𝐡(π‘˜+𝑙)+𝑗𝑐+πœ€ξ‚ξ‚€π‘–π‘™(π‘˜)+𝑐𝑗𝑙×|||𝑁(π‘˜+𝑙)]}𝑖(π‘˜)βˆ’π‘βˆ—π‘–|||(π‘˜)β‰€βˆ’2𝑖=1ξ‚†π‘Ž{min𝐿𝑖0,2𝐡𝑖+πœ€βˆ’π‘Žπ‘€π‘–0ξ‚‡βˆ’2𝑗=1,𝑗≠𝑖[π‘šξ“π‘™=1π‘Žπ‘–π‘™ξ‚€π‘(π‘˜+𝑙)+(π‘š+1)𝑀𝑗𝐡+2𝑗𝑐+πœ€π‘€ξ‚Γ—|||𝑁]}𝑖(π‘˜)βˆ’π‘βˆ—π‘–|||(π‘˜)β‰€βˆ’πœ‚2𝑖=1|||𝑁𝑖(π‘˜)βˆ’π‘βˆ—π‘–|||,(π‘˜)(3.21) it follows from (3.15) and (3.18) thatπ‘˜ξ“π‘=π‘˜0+π‘šξ‚ƒξ‚„π‘‰(𝑝+1)βˆ’π‘‰(𝑝)β‰€βˆ’πœ‚π‘˜ξ“π‘=π‘˜02+π‘šξ“π‘–=1|||𝑁𝑖(𝑝)βˆ’π‘βˆ—π‘–|||(𝑝),(3.22)So we have𝑉(π‘˜+1)+πœ‚π‘˜ξ“π‘=π‘˜02+π‘šξ“π‘–=1|||𝑁𝑖(𝑝)βˆ’π‘βˆ—π‘–|||ξ‚€π‘˜(𝑝)≀𝑉0+π‘š.(3.23)which impliesπ‘˜ξ“π‘=π‘˜02+π‘šξ“π‘–=1|||𝑁𝑖(𝑝)βˆ’π‘βˆ—π‘–|||β‰€π‘‰ξ‚€π‘˜(𝑝)0+π‘šπœ‚.(3.24)It follows thatβˆžξ“π‘˜=π‘˜02+π‘šξ“π‘–=1|||𝑁𝑖(π‘˜)βˆ’π‘βˆ—π‘–|||β‰€π‘‰ξ‚€π‘˜(π‘˜)0+π‘šπœ‚<+∞,(3.25)Thenlimπ‘˜β†’βˆžβˆ‘2𝑖=1|𝑁𝑖(π‘˜)βˆ’π‘βˆ—π‘–(π‘˜)|=0,which implies that limπ‘˜β†’βˆžξ‚€π‘π‘–(π‘˜)βˆ’π‘βˆ—π‘–ξ‚(π‘˜)=0,𝑖=1,2.(3.26) that is, 𝑁2This completes the proof of Theorem 3.1.

4. Extinction of species 𝑁2.

This section devotes to study the extinction of the species {(𝑁1(π‘˜),𝑁2(π‘˜))}

Lemma 4.1. For any positive solution 𝜎>0 of system (1.1)-(1.2), there exists a constant liminfπ‘˜β†’+βˆžξ‚ƒπ‘1(π‘˜)+𝑁2ξ‚„(π‘˜)>𝜎.(4.1) such that 𝐡>0

Proof. By (2.1), there exists a constant 𝑁𝑖(π‘˜)<π΅βˆ€π‘˜>π‘˜0,𝑖=1,2.(4.2) such thatπ‘˜>π‘˜0+π‘š,𝑖=1,2,In view of (1.1) for all 𝑁𝑖(π‘˜)≀𝑁𝑖(π‘˜+1)exp{βˆ’π‘ŸπΏπ‘–+π‘šβˆ‘π‘™=0ξ‚€π‘Žπ‘€π‘–π‘™+𝑏𝑀𝑖𝑙+𝑐𝑀𝑖𝑙𝐡𝐡}.(4.3) it follows that𝑁𝑖(π‘˜βˆ’π‘™)≀𝑁𝑖(π‘˜)exp{𝑙[βˆ’π‘ŸπΏπ‘–+π‘šξ“π‘™=0ξ‚€π‘Žπ‘€π‘–π‘™+𝑏𝑀𝑖𝑙+𝑐𝑀𝑖𝑙𝐡𝐡]},𝑙=0,1,…,π‘š.(4.4)So we have𝐢1=max{exp{𝑙[βˆ’π‘ŸπΏπ‘–+π‘šξ“π‘™=0ξ‚€π‘Žπ‘€π‘–π‘™+𝑏𝑀𝑖𝑙+𝑐𝑀𝑖𝑙𝐡𝐢𝐡]}βˆΆπ‘–=1,2,𝑙=0,1,…,π‘š},2𝑑=max𝑀𝑖𝑙𝐢1,βˆΆπ‘–=1,2,𝑙=0,1,…,π‘š(4.5)Let𝑑𝑀𝑖𝑙=max{π‘Žπ‘€π‘–π‘™,𝑏𝑀𝑖𝑙+𝑐𝑀𝑖𝑙𝐡},where 𝑖=1,2,𝑙=0,1,…,π‘š.π‘˜>π‘˜0+π‘š,𝑖,𝑗=1,2,𝑖≠𝑗, For all 𝑁𝑖(π‘˜+1)β‰₯𝑁𝑖(π‘˜)exp{π‘ŸπΏπ‘–βˆ’π‘šξ“π‘™=0π‘Žπ‘€π‘–π‘™πΆ1𝑁𝑖(π‘˜)βˆ’π‘šξ“π‘™=0𝑏𝑀𝑖𝑙+𝑐𝑀𝑖𝑙𝐡𝐢1𝑁𝑗(π‘˜)}β‰₯𝑁𝑖(π‘˜)exp{π‘ŸπΏπ‘–βˆ’π‘šξ“π‘™=0𝑑𝑀𝑖𝑙𝐢1𝑁𝑖(π‘˜)+𝑁𝑗}(π‘˜)β‰₯π‘π‘–ξ‚†ξ‚†π‘Ÿ(π‘˜)expmin𝐿1,π‘ŸπΏ2ξ‚‡βˆ’(π‘š+1)𝐢2𝑁1(π‘˜)+𝑁2,(π‘˜)(4.6) it follows from (1.1) and (4.4) that𝑁1(π‘˜+1)+𝑁2𝑁(π‘˜+1)β‰₯1(π‘˜)+𝑁2ξ‚„ξ‚†ξ‚†π‘Ÿ(π‘˜)expmin𝐿1,π‘ŸπΏ2ξ‚‡βˆ’(π‘š+1)𝐢2𝑁1(π‘˜)+𝑁2(π‘˜).(4.7)so we haveπ‘₯(π‘˜)=𝑁1(π‘˜)+𝑁2(π‘˜),Let ξ‚†ξ‚†π‘Ÿπ‘₯(π‘˜+1)β‰₯π‘₯(π‘˜)expmin𝐿1,π‘ŸπΏ2ξ‚‡βˆ’(π‘š+1)𝐢2ξ‚‡ξ‚†π‘Ÿπ‘₯(π‘˜)=π‘₯(π‘˜)exp{min𝐿1,π‘ŸπΏ2[1βˆ’(π‘š+1)𝐢2ξ‚†π‘Ÿmin𝐿1,π‘ŸπΏ2π‘₯(π‘˜)]}defξ‚†π‘Ÿξ‚ƒ.=π‘₯(π‘˜)exp1βˆ’π‘Žπ‘₯(π‘˜)(4.8) then we haveπ‘˜>π‘˜0,Note that for all π‘₯(π‘˜)=𝑁1(π‘˜)+𝑁2(π‘˜)<2𝐡,liminfπ‘˜β†’+∞1π‘₯(π‘˜)β‰₯π‘Žξ‚†ξ‚‡expπ‘Ÿ(1βˆ’2π‘Žπ΅)>0.(4.9) so similar to the proof of Lemma 2.2 of Chen [27], we have𝜎>0Then, there is a positive constant liminfπ‘˜β†’+βˆžξ‚ƒπ‘1(π‘˜)+𝑁2ξ‚„(π‘˜)=liminfπ‘˜β†’+∞1π‘₯(π‘˜)β‰₯π‘Žξ‚†ξ‚‡expπ‘Ÿ(1βˆ’2π‘Žπ΅)>𝜎.(4.10) such thatπ‘šξ“π‘™=0ξ‚ƒπ‘ŸπΏ1𝑏𝐿2π‘™βˆ’π‘Ÿπ‘€2π‘Žπ‘€1𝑙>0,π‘šξ“π‘™=0ξ‚ƒπ‘ŸπΏ1π‘ŽπΏ2π‘™βˆ’π‘Ÿπ‘€2𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1>0,(H1)This completes the proof of Lemma 4.1.

Theorem 4.2. Assume that 𝐡1where {(𝑁1(π‘˜),𝑁2(π‘˜))} is defined in (2.2). Let 𝑁2(π‘˜)β†’0 be any positive solution of system (1.1)-(1.2), then π‘˜β†’+∞. as 𝑙=0,1,…,π‘š,

Corollary 4.3. Assume that for all π‘Ÿπ‘€2π‘ŸπΏ1βˆ’min{𝑏𝐿2π‘™π‘Žπ‘€1𝑙,π‘ŽπΏ2𝑙𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1}<0() the following inequalities 𝐡1hold, where {(𝑁1(π‘˜),𝑁2(π‘˜))} is defined in (2.2). Let 𝑁2(π‘˜)β†’0 be any positive solution of system (1.1)-(1.2), then π‘˜β†’+∞. as πœ€>0

Proof of Corollary 4.3. Obviously, if condition (H1*) holds, one could easily see that condition (H1) holds, thus, the conclusion of Corollary 4.3 follows from Theorem 4.2. The proof is complete.

Proof of Theorem 4.2. It follows from (H1) that we can choose a constant π‘šξ“π‘™=0ξ‚ƒπ‘ŸπΏ1𝑏𝐿2π‘™βˆ’π‘Ÿπ‘€2π‘Žπ‘€1𝑙>0,π‘šξ“π‘™=0ξ‚ƒπ‘ŸπΏ1π‘ŽπΏ2π‘™βˆ’π‘Ÿπ‘€2𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1+πœ€ξ‚ξ‚ξ‚„>0.(4.11) small enough such thatΞ”πœ€=min{π‘šξ“π‘™=0ξ‚ƒπ‘ŸπΏ1𝑏𝐿2π‘™βˆ’π‘Ÿπ‘€2π‘Žπ‘€1𝑙,π‘šξ“π‘™=0ξ‚ƒπ‘ŸπΏ1π‘ŽπΏ2π‘™βˆ’π‘Ÿπ‘€2𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1+πœ€ξ‚ξ‚ξ‚„}>0.(4.12)Setπœ€>0For above πΎβˆˆπ‘ from (2.1), there is an integer 𝑖=1,2, such that for 𝑁𝑖(π‘˜)≀𝐡𝑖+πœ€βˆ€π‘˜>𝐾.(4.13)𝐾1>𝐾Lemma 4.1 also implies that there exists 𝑁1(π‘˜)+𝑁2𝜎(π‘˜)β‰₯2βˆ€π‘˜β‰₯𝐾1.(4.14) such that𝑁𝑒(π‘˜)=π‘ŸπΏ12(π‘˜)π‘π‘Ÿπ‘€21(π‘˜)exp{βˆ’π‘šξ“π‘™=0π‘˜βˆ’1𝑠=π‘˜βˆ’π‘™π‘ŸπΏ1ξ‚ƒπ‘ŽπΏ2𝑙𝑁2(𝑠)+𝑏𝐿2𝑙𝑁1ξ‚„+(𝑠)π‘šξ“π‘™=0π‘˜βˆ’1𝑠=π‘˜βˆ’π‘™π‘Ÿπ‘€2ξ‚ƒπ‘Žπ‘€1𝑙𝑁1(𝑠)+𝑏𝑀1𝑙𝑁2(𝑠)+𝑐𝑀1𝑙𝐡1𝑁+πœ€2ξ‚„(𝑠)}.(4.15)Setπ‘˜>𝐾2>𝐾1+π‘š,So for all 𝑒(π‘˜+1)𝑒(π‘˜)=exp{π‘ŸπΏ1π‘Ÿ2(π‘˜)βˆ’π‘šξ“π‘™=0π‘ŸπΏ1ξ‚ƒπ‘Ž2𝑙(π‘˜)𝑁2(π‘˜βˆ’π‘™)+𝑏2𝑙(π‘˜)𝑁1(π‘˜βˆ’π‘™)+𝑐2𝑙(π‘˜)𝑁2(π‘˜)𝑁1ξ‚„(π‘˜βˆ’π‘™)(4.16)βˆ’π‘Ÿπ‘€2π‘Ÿ1(π‘˜)+π‘šξ“π‘™=0π‘Ÿπ‘€2ξ‚ƒπ‘Ž1𝑙(π‘˜)𝑁1(π‘˜βˆ’π‘™)+𝑏1𝑙(π‘˜)𝑁2(π‘˜βˆ’π‘™)+𝑐1𝑙(π‘˜)𝑁1(π‘˜)𝑁2ξ‚„βˆ’(π‘˜βˆ’π‘™)(1)π‘šξ“π‘˜π‘™=0𝑠=π‘˜+1βˆ’π‘™π‘ŸπΏ1ξ‚ƒπ‘ŽπΏ2𝑙𝑁2(𝑠)+𝑏𝐿2𝑙𝑁1ξ‚„+(𝑠)π‘šξ“π‘™=0π‘˜βˆ’1𝑠=π‘˜βˆ’π‘™π‘ŸπΏ1ξ‚ƒπ‘ŽπΏ2𝑙𝑁2(𝑠)+𝑏𝐿2𝑙𝑁1ξ‚„+(𝑠)(2)π‘šξ“π‘˜π‘™=0𝑠=π‘˜+1βˆ’π‘™π‘Ÿπ‘€2ξ‚ƒπ‘Žπ‘€1𝑙𝑁1(𝑠)+𝑏𝑀1𝑙𝑁2(𝑠)+𝑐𝑀1𝑙𝐡1𝑁+πœ€2ξ‚„βˆ’(𝑠)(3)π‘šξ“π‘™=0π‘˜βˆ’1𝑠=π‘˜βˆ’π‘™π‘Ÿπ‘€2ξ‚ƒπ‘Žπ‘€1𝑙𝑁1(𝑠)+𝑏𝑀1𝑙𝑁2(𝑠)+𝑐𝑀1𝑙𝐡1𝑁+πœ€2ξ‚„ξ‚ƒπ‘Ÿ(𝑠)}(4)=exp{𝐿1π‘Ÿ2(π‘˜)βˆ’π‘Ÿπ‘€2π‘Ÿ1ξ‚„βˆ’(π‘˜)(5)π‘šξ“π‘™=0π‘ŸπΏ1π‘Žξ‚ƒξ‚€2𝑙(π‘˜)βˆ’π‘ŽπΏ2𝑙𝑁2𝑏(π‘˜βˆ’π‘™)+2𝑙(π‘˜)βˆ’π‘πΏ2𝑙𝑁1ξ‚„βˆ’(π‘˜βˆ’π‘™)(6)π‘šξ“π‘™=0π‘ŸπΏ1𝑐2𝑙(π‘˜)𝑁2(π‘˜)𝑁1βˆ’(π‘˜βˆ’π‘™)(7)π‘šξ“π‘™=0π‘Ÿπ‘€2π‘Žξ‚ƒξ‚€π‘€1π‘™βˆ’π‘Ž1𝑙𝑁(π‘˜)1𝑏(π‘˜βˆ’π‘™)+𝑀1π‘™βˆ’π‘1𝑙𝑁(π‘˜)2+𝑐(π‘˜βˆ’π‘™)(8)𝑀1𝑙𝐡1+πœ€βˆ’π‘1𝑙(π‘˜)𝑁1𝑁(π‘˜)2ξ‚„βˆ’(π‘˜βˆ’π‘™)(9)π‘šξ“π‘™=0ξ‚ƒπ‘ŸπΏ1𝑏𝐿2π‘™βˆ’π‘Ÿπ‘€2π‘Žπ‘€1𝑙𝑁1(π‘˜)βˆ’π‘šξ“π‘™=0ξ‚ƒπ‘ŸπΏ1π‘ŽπΏ2π‘™βˆ’π‘Ÿπ‘€2𝑏𝑀1π‘™βˆ’π‘Ÿπ‘€2𝑐𝑀1𝑙𝐡1𝑁+πœ€ξ‚ξ‚„2(π‘˜)}(10)≀exp{βˆ’π‘šξ“π‘™=0ξ‚ƒπ‘ŸπΏ1𝑏𝐿2π‘™βˆ’π‘Ÿπ‘€2π‘Žπ‘€1𝑙𝑁1(π‘˜)βˆ’π‘šξ“π‘™=0ξ‚ƒπ‘ŸπΏ1π‘ŽπΏ2π‘™βˆ’π‘Ÿπ‘€2𝑏𝑀1π‘™βˆ’π‘Ÿπ‘€2𝑐𝑀1𝑙𝐡1𝑁+πœ€ξ‚ξ‚„2(π‘˜)}.(11)≀expβˆ’Ξ”πœ€ξ‚€π‘1(π‘˜)+𝑁2(π‘˜)(12)≀expβˆ’Ξ”πœ€πœŽ2.(13)(14) it follows from (1.1), (4.13), and (4.14) thatπ‘˜>𝐾2,
That is, for all 𝑒(π‘˜)≀𝑒(π‘˜2)expβˆ’Ξ”πœ€πœŽ2ξ‚€π‘˜βˆ’πΎ2.(4.17)𝑒(π‘˜)So from the definition of π‘π‘ŸπΏ12(π‘˜)β‰€π‘π‘Ÿπ‘€21(π‘˜)exp{π‘šξ“π‘™=0π‘˜βˆ’1𝑠=π‘˜βˆ’π‘™π‘ŸπΏ1ξ‚ƒπ‘ŽπΏ2𝑙𝑁2(𝑠)+𝑏𝐿2𝑙𝑁1ξ‚„βˆ’(𝑠)π‘šξ“π‘™=0π‘˜βˆ’1𝑠=π‘˜βˆ’π‘™π‘Ÿπ‘€2ξ‚ƒπ‘Žπ‘€1𝑙𝑁1(𝑠)+𝑏𝑀1𝑙𝑁2(𝑠)+𝑐𝑀1𝑙𝐡1𝑁+πœ€2ξ‚„}(𝑠)Γ—expβˆ’Ξ”πœ€πœŽ2ξ‚€π‘˜βˆ’πΎ2≀2𝐡1ξ‚π‘Ÿπ‘€2exp{π‘šξ“π‘™=0π‘˜βˆ’1𝑠=π‘˜βˆ’π‘™2π‘ŸπΏ1ξ‚ƒπ‘ŽπΏ2𝑙𝐡2+𝑏𝐿2𝑙𝐡1ξ‚„+π‘šξ“π‘™=0π‘˜βˆ’1𝑠=π‘˜βˆ’π‘™2π‘Ÿπ‘€2ξ‚ƒπ‘Žπ‘€1𝑙𝐡1+𝑏𝑀1𝑙𝐡2+𝑐𝑀1𝑙𝐡1𝐡+πœ€2ξ‚„}×expβˆ’Ξ”πœ€πœŽ2ξ‚€π‘˜βˆ’πΎ2→0asπ‘˜β†’+∞.(4.18) it follows thatlimπ‘˜β†’βˆžπ‘2(π‘˜)=0.(4.19)The above analysis shows that𝑁1(π‘˜+1)=𝑁1𝑁(π‘˜)exp1.4βˆ’2.52+0.02sin(π‘˜)1(π‘˜)βˆ’0.5𝑁1(π‘˜βˆ’1)βˆ’0.55𝑁2(π‘˜)βˆ’0.3𝑁2(π‘˜βˆ’1)βˆ’0.1𝑁1(π‘˜)𝑁2(π‘˜)βˆ’0.09𝑁1(π‘˜)𝑁2ξ‚„,𝑁(π‘˜βˆ’1)2(π‘˜+1)=𝑁2𝑁(π‘˜)exp0.7βˆ’2.62+0.02sin(π‘˜)2(π‘˜)βˆ’1.2𝑁2(π‘˜βˆ’1)βˆ’0.01𝑁1(π‘˜)βˆ’0.01𝑁1(π‘˜βˆ’1)βˆ’0.09𝑁1(π‘˜)𝑁2(π‘˜)βˆ’0.1𝑁2(π‘˜)𝑁1ξ‚„.(π‘˜βˆ’1)(5.1)This completes the proof of Theorem 4.2.

5. Examples

The following two examples show the feasibility of our results.

Example 5.1. Consider the following systemΞ”11=π‘ŸπΏ1βˆ’π‘Žπ‘€11𝐡1βˆ’1𝑙=0𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1𝐡2Ξ”β‰ˆ0.8271394917>0,21=π‘ŸπΏ2βˆ’π‘Žπ‘€21𝐡2βˆ’1𝑙=0𝑏𝑀2𝑙+𝑐𝑀2𝑙𝐡2𝐡1β‰ˆ0.3138443044>0.(5.2)One could easily see thatξ‚†π‘Žmin𝐿10,2𝐡1βˆ’π‘Žπ‘€10ξ‚‡βˆ’ξ‚ƒπ‘Žπ‘€11𝑏+2𝑀2+2𝐡2π‘π‘€ξ‚†π‘Žξ‚ξ‚„β‰ˆ0.1776281960,min𝐿20,2𝐡2βˆ’π‘Žπ‘€20ξ‚‡βˆ’ξ‚ƒπ‘Žπ‘€21𝑏+2𝑀1+2𝐡1π‘π‘€ξ‚ξ‚„β‰ˆ0.613080483.(5.3)Clearly, conditions (2.5) are satisfied. From Theorem 2.3, it follows that system (5.1) is permanent. Also, by simple computation, we havelimπ‘˜β†’βˆžξ‚€π‘π‘–(π‘˜)βˆ’π‘βˆ—π‘–ξ‚(π‘˜)=0,𝑖=1,2.(5.4)The above inequality shows that (H0) is fulfilled. From Theorem 3.1, it follows that(𝑁1(π‘˜),𝑁2(π‘˜))=(0.42,0.175),(0.41,0.178),Figures 1 and 2 are the numeric simulations of the solution of system (5.1) with initial condition (0.4,0.18),π‘˜=βˆ’1,0. and 𝑁1

Example 5.2. Consider the following system:π‘Ÿπ‘€2π‘ŸπΏ1=0.7𝑏1.4=0.5,𝐿20π‘Žπ‘€10=0.9π‘Ž1.7β‰ˆ0.5294,𝐿20𝑏𝑀10+𝑐𝑀10𝐡1β‰ˆ0.6𝑏0.5+0.5Γ—1.1476β‰ˆ0.5588,𝐿21π‘Žπ‘€11=0.7π‘Ž0.9β‰ˆ0.7778,𝐿21𝑏𝑀11+𝑐𝑀11𝐡1β‰ˆ0.50.5+0.4Γ—1.1476β‰ˆ0.5214.(5.6)One could easily see that𝑙=0,1,Then, for π‘Ÿπ‘€2π‘ŸπΏ1π‘βˆ’min{𝐿2π‘™π‘Žπ‘€1𝑙,π‘ŽπΏ2𝑙𝑏𝑀1𝑙+𝑐𝑀1𝑙𝐡1}<0.(5.7)limπ‘˜β†’βˆžπ‘2(π‘˜)=0.The above inequality shows that (H1*) is fulfilled. From Theorem 4.2, it follows that (𝑁1(π‘˜),𝑁2(π‘˜))=(0.42,0.6),(π‘˜=βˆ’1,0) Numeric simulation of the dynamic behaviors of system (5.5) with the initial conditions 𝑁2 is presented in Figure 3.

Remark 5.3. In the above two examples, we can take as the perturbation terms. Our numeric simulations show that if the perturbation terms are large enough, then those terms will greatly influence the dynamic behaviors of the system, and in some cases, may lead to the extinction of the species.

Acknowledgments

The authors are grateful to anonymous referees for their excellent suggestions, which greatly improve the presentation of the paper. Also, this work was supported by the Program for New Century Excellent Talents in Fujian Province University (0330-003383).