Abstract

We mainly investigate the global behavior to the family of higher-order nonautonomous recursive equations given by 𝑦𝑛=(𝑝+π‘Ÿπ‘¦π‘›βˆ’π‘ )/(π‘ž+πœ™π‘›(π‘¦π‘›βˆ’1,π‘¦π‘›βˆ’2,…,π‘¦π‘›βˆ’π‘š)+π‘¦π‘›βˆ’π‘ ), π‘›βˆˆβ„•0, with 𝑝β‰₯0,π‘Ÿ,π‘ž>0,𝑠,π‘šβˆˆβ„• and positive initial values, and present some sufficient conditions for the parameters and maps πœ™π‘›βˆΆ(ℝ+)π‘šβ†’β„+,π‘›βˆˆβ„•0, under which every positive solution to the equation converges to zero or a unique positive equilibrium. Our main result in the paper extends some related results from the work of Gibbons et al. (2000), Iričanin (2007), and SteviΔ‡ (vol. 33, no. 12, pages 1767–1774, 2002; vol. 6, no. 3, pages 405–414, 2002; vol. 9, no. 4, pages 583–593, 2005). Besides, several examples and open problems are presented in the end.

1. Introduction

There has been a great interest in studying classes of nonlinear difference equations and systems, particularly those which model real situations in engineering and science, for example, [1–15]. On the other hand, non-autonomous difference equations also have a ubiquitous presence in applications from automatic controlling, ecology, economics, biology, population dynamics and so forth. Thus the main task when dealing them is to know the asymptotical behaviour of their solutions. For some recent advances in this area see [1, 16–24] and the references cited therein.

Gibbons et al. [25] discussed the behavior of nonnegative solutions to the rational recursive equationπ‘₯𝑛+1=𝛼+𝛽π‘₯π‘›βˆ’1𝛾+π‘₯𝑛,π‘›βˆˆβ„•0,(1.1) with 𝛼,𝛽,𝛾β‰₯0, and also proposed an open problem, which had been solved by SteviΔ‡ in [4], concerning the particular case 𝛼=0,𝛾=𝛽 in (1.1) (see also [26, 27] for the case of some related higher-order difference equations, as well as [28–30]).

In [3], SteviΔ‡ studied the behavior of nonnegative solutions of the following second-order difference equationπ‘₯𝑛+1=𝛼+𝛽π‘₯π‘›βˆ’1ξ€·π‘₯1+𝑔𝑛,π‘›βˆˆβ„•0,(1.2) where 𝑔:ℝ+⋃{0}→ℝ is a nonnegative increasing mapping. Obviously (1.2) is a generalization of (1.1).

Later, SteviΔ‡ [6] extended (1.1) and (1.2) to the following more general equationπ‘₯𝑛+1=𝛼+𝛽π‘₯π‘›βˆ’π‘˜π‘“ξ€·π‘₯𝑛,…,π‘₯π‘›βˆ’π‘˜+1ξ€Έ,π‘›βˆˆβ„•0,(1.3) where π‘˜βˆˆβ„•,𝛼,𝛽β‰₯0 and 𝑓:β„π‘˜+→ℝ+ is a continuous function nondecreasing in each variable such that 𝑓(0,0,…,0)>0; and investigated the oscillatory behavior, the boundedness character and the global stability of nonnegative solutions to the equation.

Recently, Iričanin [2] studied the asymptotic behavior of the following class of autonomous difference equations:π‘₯𝑛=𝛼π‘₯π‘›βˆ’π‘˜1+π‘₯π‘›βˆ’π‘˜ξ€·π‘₯+π‘“π‘›βˆ’1,…,π‘₯π‘›βˆ’π‘šξ€Έ,π‘›βˆˆβ„•0,(1.4) where 𝛼>0,π‘˜,π‘šβˆˆβ„• and 𝑓 is a continuous mapping satisfying the condition𝑒𝛽min1,…,π‘’π‘šξ€Ύξ€·π‘’β‰€π‘“1,𝑒2,…,π‘’π‘šξ€Έξ€½π‘’β‰€π›½max1,…,π‘’π‘šξ€Ύ,(1.5) for certain π›½βˆˆ(0,1). In [2] he adopted the approach of frame sequences (a discrete analog of the method of frame curves used in the theory of differential equations), which has been used in the literature for many times, for example, [26–28, 30–38]; and showed that all positive solutions converge to zero if 0<𝛼≀1 and converge to the unique positive equilibrium if 𝛼>1.

Motivated by the above works, especially [2, 5], our aim in this paper is to study the global attractivity in the following family of non-autonomous difference equations:𝑦𝑛=𝑝+π‘Ÿπ‘¦π‘›βˆ’π‘ π‘ž+πœ™π‘›ξ€·π‘¦π‘›βˆ’1,…,π‘¦π‘›βˆ’π‘šξ€Έ+π‘¦π‘›βˆ’π‘ ,π‘›βˆˆβ„•0,(1.6) where 𝑝β‰₯0,π‘Ÿ,π‘ž>0,𝑠,π‘šβˆˆβ„•, and πœ™π‘›βˆΆ(ℝ+)π‘šβ†’β„+,π‘›βˆˆβ„•0 are mappings satisfying the following conditionξ€½π‘₯𝛽min1,…,π‘₯π‘šξ€Ύβ‰€πœ™π‘›ξ€·π‘₯1,π‘₯2,…,π‘₯π‘šξ€Έξ€½π‘₯≀𝛽max1,…,π‘₯π‘šξ€Ύ,(1.7) for some fixed π›½βˆˆ(0,+∞).

Through careful analysis, we find that the results in [2] also persist if the function 𝑓 in (1.4) is replaced by variable functions such as πœ™π‘› satisfying condition (1.7). If 𝑝=0, then (1.6) can be transformed into the following formπ‘₯𝑛=(π‘Ÿ/π‘ž)π‘₯π‘›βˆ’π‘ 1+𝐺𝑛π‘₯π‘›βˆ’1,…,π‘₯π‘›βˆ’π‘šξ€Έ+π‘₯π‘›βˆ’π‘ ,π‘›βˆˆβ„•0,(1.8) where 𝐺𝑛(π‘₯1,…,π‘₯π‘š)=πœ™π‘›(π‘žπ‘₯1,π‘žπ‘₯2,…,π‘žπ‘₯π‘š)/π‘ž, by setting 𝑦𝑛=π‘žπ‘₯𝑛. Then according to the results in [2], we have that if π‘Ÿβ‰€π‘ž, then limπ‘›β†’βˆžπ‘¦π‘›=0; and if π‘Ÿ>π‘ž, then limπ‘›β†’βˆžπ‘¦π‘›=π‘žlimπ‘›β†’βˆžπ‘₯𝑛=π‘ž((π‘Ÿ/π‘žβˆ’1)/(1+𝛽))=(π‘Ÿβˆ’π‘ž)/(1+𝛽), for some π›½βˆˆ(0,1). Thus it suffices to consider the case when 𝑝>0 in the following.

Note that if 𝑝>0, then by relation (1.7), βˆšπ‘¦=((π‘žβˆ’π‘Ÿ)2+4𝑝(1+𝛽)+π‘Ÿβˆ’π‘ž)/2(1+𝛽) is the unique positive equilibrium of (1.6). And in Section 3, we will prove the following main theorem.

Theorem 1.1. Consider (1.6), where 𝑠,π‘šβˆˆβ„•,𝑝,π‘Ÿ,π‘ž>0 with π‘Ÿπ‘žβ‰₯𝑝, and πœ™π‘›βˆΆ(ℝ+)π‘šβ†’β„+ are functions satisfying the condition ξ€½π‘₯𝛽min1,…,π‘₯π‘šξ€Ύβ‰€πœ™π‘›ξ€·π‘₯1,π‘₯2,…,π‘₯π‘šξ€Έξ€½π‘₯≀𝛽max1,…,π‘₯π‘šξ€Ύ,(1.9) for some fixed π›½βˆˆ(0,+∞). If π‘žβ‰₯π‘Ÿ,π›½βˆˆ(0,+∞) or π‘ž<π‘Ÿ,π›½βˆˆ(0,𝛽0], where 𝛽0=4𝑝/(π‘žβˆ’π‘Ÿ)2+1, then the unique positive equilibrium 𝑦 of (1.6) is a global attractor.

2. Auxiliary Results

Before proving the main result of this paper, in this section we first confirm two preliminary lemmas.

Let Ξ¦βˆΆβ„+⋃{0}×ℝ+→ℝ be the mapping Ξ¦(π‘₯,𝑀)=(𝑝+π‘Ÿπ‘€)/(π‘ž+𝛽π‘₯+𝑀), where 𝑝,π‘ž,π‘Ÿ,𝛽>0 and π‘Ÿπ‘žβ‰₯𝑝, so as Ξ¦ is decreasing in the first variable and increasing in the second one. Then (1.6) can be simplified to the following form:π‘¦π‘›ξƒ©πœ™=Ξ¦π‘›ξ€·π‘¦π‘›βˆ’1,…,π‘¦π‘›βˆ’π‘šξ€Έπ›½,π‘¦π‘›βˆ’π‘ ξƒͺ,π‘›βˆˆβ„•0.(2.1)

Lemma 2.1. Consider the following higher-order rational difference equation: 𝑀𝑛=Ξ¦π‘₯,π‘€π‘›βˆ’π‘ ξ€Έ,π‘›βˆˆβ„•0,(2.2) where 𝑝,π‘Ÿ,π‘ž,π›½βˆˆβ„+,π‘ βˆˆβ„•, the parameter π‘₯β‰₯0 and initial values π‘€π‘˜,π‘˜βˆˆ{βˆ’1,…,βˆ’π‘ } are arbitrary nonnegative numbers. Then every positive solution (𝑀𝑛)βˆžπ‘›=βˆ’π‘  to (2.2) converges to the unique positive equilibrium point 1𝑆(π‘₯)=2(π‘žβˆ’π‘Ÿ+𝛽π‘₯)2ξ‚Ά+4π‘βˆ’(π‘žβˆ’π‘Ÿ+𝛽π‘₯).(2.3)

Proof. First we show that (2.2) has a unique positive equilibrium. Assume that 𝑀>0 is an equilibrium point of (2.2), then 𝑀=(𝑝+π‘Ÿπ‘€)/(π‘ž+𝛽π‘₯+𝑀) which implies only one positive root 1𝑀=𝑆(π‘₯)=2(π‘žβˆ’π‘Ÿ+𝛽π‘₯)2ξ‚Ά+4π‘βˆ’(π‘žβˆ’π‘Ÿ+𝛽π‘₯).(2.4) If 𝑠β‰₯2, then (2.2) can be separated into 𝑠 analogous first-order difference equations of the form 𝑀𝑛(π‘˜)=𝑝+π‘Ÿπ‘€(π‘˜)π‘›βˆ’1π‘ž+𝛽π‘₯+𝑀(π‘˜)π‘›βˆ’1,π‘›βˆˆβ„•0,(2.5) with different initial values 𝑀(π‘˜)βˆ’1=π‘€βˆ’(π‘˜+1), where π‘˜βˆˆ{0,1,…,π‘ βˆ’1}. Note that the equation is Riccati, so it can be solved and the convergence of its solutions can be proved (see, e.g., [39] or a recent comment in [40]).
Let the symbol [] symbolize the greatest integer function and define a sequence 𝑃(𝑛)≑𝑛(mod𝑠),π‘›βˆˆβ„•0. Obviously, for each positive solution (𝑀𝑛)βˆžπ‘›=βˆ’π‘  to (2.2) we have𝑀𝑛=𝑀[](π‘ βˆ’π‘ƒ(𝑛)βˆ’1)𝑛/𝑠,𝑛β‰₯βˆ’π‘ .(2.6)
From the above analysis, it suffices to prove the case when 𝑠=1. Suppose that 𝑠=1 for (2.2), then for all π‘›βˆˆβ„•0, we have𝑀𝑛+1βˆ’π‘€π‘›=𝑀0βˆ’π‘€βˆ’1ξ€Έ(π‘Ÿ(π‘ž+𝛽π‘₯)βˆ’π‘)𝑛+1ξ€·π‘ž+𝛽π‘₯+π‘€π‘›ξ€Έξ‚€βˆπ‘›βˆ’1𝑖=0ξ€·π‘ž+𝛽π‘₯+𝑀𝑖2ξ€·π‘ž+𝛽π‘₯+π‘€βˆ’1ξ€Έ,𝑀(2.7)2π‘˜+2βˆ’π‘€2π‘˜=𝑀(π‘Ÿ(π‘ž+𝛽π‘₯)βˆ’π‘)2π‘˜+1βˆ’π‘€2π‘˜βˆ’1ξ€Έξ€·π‘ž+𝛽π‘₯+𝑀2π‘˜+1ξ€Έξ€·π‘ž+𝛽π‘₯+𝑀2π‘˜βˆ’1ξ€Έ,π‘˜βˆˆβ„•0𝑀,(2.8)2π‘˜+3βˆ’π‘€2π‘˜+1=𝑀(π‘Ÿ(π‘ž+𝛽π‘₯)βˆ’π‘)2π‘˜+2βˆ’π‘€2π‘˜ξ€Έξ€·π‘ž+𝛽π‘₯+𝑀2π‘˜+2ξ€Έξ€·π‘ž+𝛽π‘₯+𝑀2π‘˜ξ€Έ,π‘˜βˆˆβ„•0.(2.9)Case 1. If π‘Ÿ(π‘ž+𝛽π‘₯)β‰₯𝑝, then by (2.7) (𝑀𝑛)βˆžπ‘›=βˆ’1 is either nonincreasing or nondecreasing. On the other hand, we have that min{𝑝,π‘Ÿ}max{π‘ž+𝛽π‘₯,1}≀𝑀𝑛≀max{𝑝,π‘Ÿ}min{π‘ž+𝛽π‘₯,1}(2.10) for all 𝑛β‰₯0. Therefore, the limit of (𝑀𝑛)βˆžπ‘›=βˆ’1 exists, and through simple calculations, we get limπ‘›β†’βˆžπ‘€π‘›=𝑆(π‘₯).Case 2. If π‘Ÿ(π‘ž+𝛽π‘₯)<𝑝, then by (2.8) and (2.9) and inductively we have that (𝑀2π‘˜) is nonincreasing and (𝑀2π‘˜βˆ’1) nondecreasing, or (𝑀2π‘˜) is nondecreasing and (𝑀2π‘˜βˆ’1) nonincreasing. Again by (2.10), the limits of (𝑀2π‘˜) and (𝑀2π‘˜βˆ’1) exist, denoted by limπ‘˜β†’βˆžπ‘€2π‘˜=𝛼 and limπ‘˜β†’βˆžπ‘€2π‘˜βˆ’1=𝛾. From (2.2) we have 𝛼=𝑝+π‘Ÿπ›Ύπ‘ž+𝛽π‘₯+𝛾,𝛾=𝑝+π‘Ÿπ›Ό,π‘ž+𝛽π‘₯+𝛼(2.11) which imply that 𝛼=𝛾=𝑀. Hence limπ‘›β†’βˆžπ‘€π‘›=𝑆(π‘₯).
The proof of Lemma 2.1 is complete.

Lemma 2.2. Suppose that the parameters, in (2.3), satisfy 𝑝,π‘Ÿ,π‘ž,𝛽>0 with 𝑑=π‘žβˆ’π‘Ÿ. Define two sequences (π‘€π‘˜)βˆžπ‘˜=1 and (π‘šπ‘˜)βˆžπ‘˜=1 as follows: π‘šπ‘˜ξ‚€π‘€=π‘†π‘˜+πœ€π‘˜ξ‚π‘€,π‘˜=1,2,…,π‘˜ξ‚€π‘š=π‘†π‘˜βˆ’1βˆ’πœ€ξ‚π‘˜βˆ’1,π‘˜=2,3,…,(2.12) where the initial value 𝑀1=𝑆(0), and πœ€βˆˆ(0,πœ†), 1πœ†=2(1+𝛽)𝑑+𝛽𝑀1ξ€Έ2ξ€·+4𝑝(1+𝛽)βˆ’π‘‘+𝛽𝑀1ξ€Έξ‚Ά.(2.13) If π‘žβ‰₯π‘Ÿ,π›½βˆˆ(0,+∞) or π‘ž<π‘Ÿ,π›½βˆˆ(0,𝛽0], where 𝛽0=4𝑝/(π‘žβˆ’π‘Ÿ)2+1, then limπ‘˜β†’βˆžπ‘€π‘˜=limπ‘˜β†’βˆžπ‘šπ‘˜.(2.14)

Proof. By simple calculations, we have 𝑀2βˆ’π‘€1ξ€·π‘š=𝑆1ξ€Έ=1βˆ’πœ€βˆ’π‘†(0)2ξ‚΅ξ”ξ€·ξ€·π‘šπ‘‘+𝛽1βˆ’πœ€ξ€Έξ€Έ2√+4π‘βˆ’π‘‘2ξ€·π‘š+4π‘βˆ’π›½1ξ€Έξ‚Ά=1βˆ’πœ€2βŽ›βŽœβŽœβŽœβŽπ›½2ξ€·π‘š1ξ€Έβˆ’πœ€2ξ€·π‘š+2𝛽𝑑1ξ€Έβˆ’πœ€ξ”ξ€·ξ€·π‘šπ‘‘+𝛽1βˆ’πœ€ξ€Έξ€Έ2√+4𝑝+𝑑2ξ€·π‘š+4π‘βˆ’π›½1ξ€ΈβŽžβŽŸβŽŸβŽŸβŽ ξ€·π‘šβˆ’πœ€=βˆ’π›½1ξ€ΈβŽ›βŽœβŽœβŽœβŽπ‘†ξ€·π‘šβˆ’πœ€1ξ€Έβˆ’πœ€+𝑆(0)ξ”ξ€·ξ€·π‘šπ‘‘+𝛽1βˆ’πœ€ξ€Έξ€Έ2√+4𝑝+𝑑2⎞⎟⎟⎟⎠.+4𝑝(2.15) Obviously, 𝑆(π‘š1βˆ’πœ€)+𝑆(0)>0.Claim 1. π‘š1βˆ’πœ€>0.Proof. Define a function 𝑓(π‘₯)=2(𝑆(𝑀1+π‘₯)βˆ’π‘₯). It suffices to prove that 𝑓(π‘₯)>0 for all π‘₯∈(0,πœ†). The derivative of 𝑓(π‘₯) is 𝑑𝑓=𝛽𝑀𝑑π‘₯𝑑+𝛽1+π‘₯𝑑+𝛽(𝑀1ξ€»+π‘₯)2+4π‘βˆ’π›½βˆ’2<0.(2.16) Since 𝑓(πœ†)=0 and 𝑓(0)>0, thus 𝑓(π‘₯)>0 for π‘₯∈(0,πœ†).Therefore, it follows from (2.15) and Claim 1 that 𝑀2βˆ’π‘€1<0.(2.17) Denote πΏπ‘˜=𝑀2𝑑+π›½π‘˜+1+π‘€π‘˜ξ€Έ+πœ€/π‘˜+πœ€/(π‘˜+1)𝑀𝑑+π›½π‘˜+1+πœ€/(π‘˜+1)ξ€Έξ€»2+4𝑝+𝑀𝑑+π›½π‘˜+πœ€/π‘˜ξ€Έξ€»2,𝑄+4π‘π‘˜=ξ€·π‘š2𝑑+π›½π‘˜+π‘šπ‘˜βˆ’1ξ€Έβˆ’πœ€/π‘˜βˆ’πœ€/(π‘˜βˆ’1)ξ”ξ€Ίξ€·π‘šπ‘‘+π›½π‘˜βˆ’πœ€/π‘˜ξ€Έξ€»2+4𝑝+ξ€Ίξ€·π‘šπ‘‘+π›½π‘˜βˆ’1βˆ’πœ€/(π‘˜βˆ’1)ξ€Έξ€»2.+4𝑝(2.18) Simply, we obtain that |πΏπ‘˜|<1 and |π‘„π‘˜|<1.
Observe that2ξ€·π‘šπ‘˜+1βˆ’π‘šπ‘˜ξ€Έξ€·=𝛽1βˆ’πΏπ‘˜ξ€Έξ‚Έπ‘€π‘˜βˆ’π‘€π‘˜+1+πœ€ξ‚Ή2ξ€·π‘€π‘˜(π‘˜+1),π‘˜=1,2,…,π‘˜+1βˆ’π‘€π‘˜ξ€Έξ€·π‘„=π›½π‘˜ξ€Έξ‚Έπ‘šβˆ’1π‘˜βˆ’π‘šπ‘˜βˆ’1+πœ€ξ‚Ήπ‘˜(π‘˜+1),π‘˜=2,3,….(2.19) With (2.17) and (2.19), it follows by induction that (π‘šπ‘˜)βˆžπ‘˜=1,(π‘€π‘˜)βˆžπ‘˜=1 are strictly increasing and decreasing, respectively. In addition, π‘€π‘˜>0,π‘˜=1,2,…, hence (π‘€π‘˜)βˆžπ‘˜=1 possesses a finite limit denoted by πœ‘=limπ‘˜β†’βˆžπ‘€π‘˜. From (2.12), we know that the limit of (π‘šπ‘˜)βˆžπ‘˜=1 (denoted by πœ‡=limπ‘˜β†’βˆžπ‘šπ‘˜) also exists. Therefore, taking limits on both sides of (2.12), we have πœ‡=𝑆(πœ‘),πœ‘=𝑆(πœ‡)(2.20) which imply that πœ‡2πœ‘+π‘‘πœ‡+π›½πœ‡πœ‘=𝑝,2+π‘‘πœ‘+π›½πœ‡πœ‘=𝑝,(2.21)(πœ‡βˆ’πœ‘)(πœ‡+πœ‘+𝑑)=0.(2.22)Claim 2. If π‘žβ‰₯π‘Ÿ,π›½βˆˆ(0,+∞) or π‘ž<π‘Ÿ,π›½βˆˆ(0,𝛽0], then πœ‡=πœ‘.Proof. Suppose that πœ‡β‰ πœ‘, then it follows from (2.22) that πœ‡=βˆ’πœ‘βˆ’π‘‘. By substituting πœ‡=βˆ’πœ‘βˆ’π‘‘ into the second identity of (2.21), we get (1βˆ’π›½)πœ‘2+𝑑(1βˆ’π›½)πœ‘βˆ’π‘=0.(2.23)(i)If 𝛽=1, then 𝑝=0 which is a contradiction to 𝑝>0,(ii)If π›½βˆˆ(0,1), then the unique positive root of (2.23) is βˆšπœ‘=𝑑2+4𝑝/(1βˆ’π›½)βˆ’π‘‘2>𝑀1.(2.24) However, πœ‘<𝑀1 since (π‘€π‘˜) is strictly decreasing.(iii)If π‘ž=π‘Ÿ,π›½βˆˆ(1,+∞), then (2.23) reduces to 0>(1βˆ’π›½)πœ‘2=𝑝>0.(iv)If π‘žβ‰ π‘Ÿ,π›½βˆˆ(1,𝛽0), then for (2.23), Ξ”=𝑑2(1βˆ’π›½)2+4𝑝(1βˆ’π›½)<0 which implies that (2.23) has no real roots.(v)For π‘ž>π‘Ÿ,𝛽=𝛽0, we have Ξ”=0. So, πœ‘=(π‘Ÿβˆ’π‘ž)/2<0 which is contradictive to πœ‘β‰₯0.(vi)For π‘ž>π‘Ÿ,π›½βˆˆ(𝛽0,+∞), (2.23) has two negative roots.(vii)For π‘ž<π‘Ÿ,𝛽=𝛽0. Solving (2.23), we get πœ‘=(π‘Ÿβˆ’π‘ž)/2 implying πœ‡=(π‘Ÿβˆ’π‘ž)/2. Hence πœ‡=πœ‘, which contradicts the assumption.
Obviously Claim 2 follows directly from (i)–(vii).

Applying Claim 2 and (2.21), we conclude thatlimπ‘˜β†’βˆžπ‘€π‘˜=limπ‘˜β†’βˆžπ‘šπ‘˜=βˆšπ‘‘2+4𝑝(1+𝛽)βˆ’π‘‘2.(1+𝛽)(2.25) Hence the lemma is complete.

3. Main Results

Obviously, condition (1.7) in Section 1 guarantees the fact that (1.6) possesses a unique equilibrium point βˆšπ‘¦=(𝑑2+4𝑝(1+𝛽)βˆ’π‘‘))/(2(1+𝛽)), where 𝑑=π‘žβˆ’π‘Ÿ.

First, we present a proposition concerning the boundedness of all positive solutions to (1.6).

Proposition 3.1. Consider (1.6) with condition (1.7) and 𝑝,π‘ž,π‘Ÿβˆˆβ„+, then every positive solution to (1.6) has permanent bounds.

Proof. Let (𝑦𝑛) be a solution to (1.6) with positive initial values. Then, we have 𝑦𝑛=𝑝+π‘Ÿπ‘¦π‘›βˆ’π‘ π‘ž+πœ™π‘›ξ€·π‘¦π‘›βˆ’1,…,π‘¦π‘›βˆ’π‘šξ€Έ+π‘¦π‘›βˆ’π‘ β‰€max{𝑝,π‘Ÿ}ξ€½minπ‘ž+πœ™π‘›ξ€·π‘¦π‘›βˆ’1,…,π‘¦π‘›βˆ’π‘šξ€Έξ€Ύβ‰€,1max{𝑝,π‘Ÿ}𝑦min{π‘ž,1}=π‘ˆ,βˆ€π‘›β‰₯0,𝑛=𝑝+π‘Ÿπ‘¦π‘›βˆ’π‘ π‘ž+πœ™π‘›ξ€·π‘¦π‘›βˆ’1,…,π‘¦π‘›βˆ’π‘šξ€Έ+π‘¦π‘›βˆ’π‘ β‰₯min{𝑝,π‘Ÿ}ξ€½maxπ‘ž+πœ™π‘›ξ€·π‘¦π‘›βˆ’1,…,π‘¦π‘›βˆ’π‘šξ€Έξ€Ύβ‰₯,1min{𝑝,π‘Ÿ}max{π‘ž+π›½π‘ˆ,1}=𝐿,βˆ€π‘›β‰₯π‘š.(3.1) Thus we have πΏβ‰€π‘¦π‘›β‰€π‘ˆ, for all 𝑛β‰₯π‘š.

In the following, we will give the proof of the main result (i.e., Theorem 1.1) presented in Section 1.

Proof of Theorem 1.1. Let πœ€βˆˆβ„+ be an arbitrary fixed number satisfying 0<πœ€<πœ† (πœ† defined by (2.13) in Lemma 2.2). Define two sequences (π‘€π‘˜)βˆžπ‘˜=1,(π‘šπ‘˜)βˆžπ‘˜=1 as shown by (2.12) in Lemma 2.2. Let (𝑦𝑛) be any positive solution to (1.6). In the following, we proceed by presenting two claims.Claim 1. There exists 𝑁1βˆˆβ„•, such that π‘š1βˆ’πœ€β‰€π‘¦π‘›β‰€π‘€1+πœ€ for all 𝑛β‰₯β„•1.Proof. From (2.1), we have that π‘¦π‘›ξƒ©πœ™=Ξ¦π‘›ξ€·π‘¦π‘›βˆ’1,…,π‘¦π‘›βˆ’π‘šξ€Έπ›½,π‘¦π‘›βˆ’π‘ ξƒͺ≀Φ0,π‘¦π‘›βˆ’π‘ ξ€Έ.(3.2) Suppose that (π‘₯𝑛) is a solution to the following difference equation π‘₯𝑛=Ξ¦0,π‘₯π‘›βˆ’π‘ ξ€Έ,π‘›βˆˆβ„•0,(3.3) with initial values π‘₯βˆ’π‘ =π‘¦βˆ’π‘ ,…,π‘₯βˆ’1=π‘¦βˆ’1. From this and in view of the monotonicity of the function 𝑓(π‘₯)=(𝑝+π‘Ÿπ‘₯)/(π‘ž+π‘₯),π‘₯βˆˆβ„+, by induction we can easily get that 𝑦𝑛≀π‘₯𝑛 for 𝑛β‰₯βˆ’π‘ .
By Lemma 2.1, limπ‘›β†’βˆžπ‘₯𝑛=𝑀1. Hence, there exists 𝑏1βˆˆβ„• such that π‘₯𝑛≀𝑀1+πœ€ for 𝑛β‰₯𝑏1, then𝑦𝑛≀𝑀1+πœ€(3.4) for all 𝑛β‰₯𝑏1.
From (2.1), (1.7), and (3.4), it follows that𝑦𝑛𝑦β‰₯Ξ¦maxπ‘›βˆ’1,…,π‘¦π‘›βˆ’π‘šξ€Ύ,π‘¦π‘›βˆ’π‘ ξ€Έξ€·π‘€β‰₯Ξ¦1+πœ€,π‘¦π‘›βˆ’π‘ ξ€Έ(3.5) for all 𝑛β‰₯𝑏1+π‘š.
Suppose that (𝑒𝑛) is a solution to the following difference equation:𝑒𝑛𝑀=Ξ¦1+πœ€,π‘’π‘›βˆ’π‘ ξ€Έ,π‘›βˆˆβ„•0,(3.6) with initial values 𝑒𝑏1+π‘šβˆ’π‘ =𝑦𝑏1+π‘šβˆ’π‘ ,…,𝑒𝑏1+π‘šβˆ’1=𝑦𝑏1+π‘šβˆ’1.
Since the function β„Ž(π‘₯)=Ξ¦(𝑀1+πœ€,π‘₯) is increasing on the interval (0,+∞), we can easily get by induction that 𝑦𝑛β‰₯𝑒𝑛 for 𝑛β‰₯𝑏1+π‘šβˆ’π‘ , and by Lemma 2.1, limπ‘›β†’βˆžπ‘’π‘›=π‘š1. Hence there exists a natural number 𝑁1β‰₯𝑏1 such that 𝑒𝑛β‰₯π‘š1βˆ’πœ€ for 𝑛β‰₯𝑁1, then π‘š1βˆ’πœ€β‰€π‘¦π‘›β‰€π‘€1+πœ€ for 𝑛β‰₯𝑁1.

Working inductively, we will eventually reach the following claim.
Claim 2. For each π‘˜βˆˆβ„•, there exists π‘π‘˜βˆˆβ„• such that π‘šπ‘˜βˆ’πœ€/π‘˜β‰€π‘¦π‘›β‰€π‘€π‘˜+πœ€/π‘˜ for all 𝑛β‰₯π‘π‘˜.Proof. By Claim 1, if π‘˜=1, we have 𝑁1βˆˆβ„• such that π‘š1βˆ’πœ€β‰€π‘¦π‘›β‰€π‘€1+πœ€ for all 𝑛β‰₯𝑁1. Then by the method of induction, we can assume that for π‘˜βˆˆβ„• fixed, there exists π‘π‘˜βˆˆβ„• such that π‘šπ‘˜βˆ’πœ€/π‘˜β‰€π‘¦π‘›β‰€π‘€π‘˜+πœ€/π‘˜ for all 𝑛β‰₯π‘π‘˜. Thus, it suffices to show that there exists π‘π‘˜+1βˆˆβ„• such that π‘šπ‘˜+1βˆ’πœ€/(π‘˜+1)β‰€π‘¦π‘›β‰€π‘€π‘˜+1+πœ€/(π‘˜+1) for all 𝑛β‰₯π‘π‘˜+1.
Let 𝑧=max{𝑠,π‘š}. Define a sequence (π‘₯𝑛(π‘˜+1)) as followsπ‘₯𝑛(π‘˜+1)𝑆=Ξ¦βˆ’1ξ€·π‘€π‘˜+1ξ€Έ,π‘₯(π‘˜+1)π‘›βˆ’π‘ ξ‚,𝑛β‰₯π‘π‘˜+𝑧,(3.7) with π‘₯𝑛(π‘˜+1)=𝑦𝑛, for 𝑛=π‘π‘˜,…,π‘π‘˜+π‘§βˆ’1.
By reasoning inductively on 𝑛β‰₯π‘π‘˜+𝑧, one has𝑦𝑛𝑦≀Φminπ‘›βˆ’1,…,π‘¦π‘›βˆ’π‘šξ€Ύ,π‘¦π‘›βˆ’π‘ ξ€Έξ€·π‘†β‰€Ξ¦βˆ’1ξ€·π‘€π‘˜+1ξ€Έ,π‘¦π‘›βˆ’π‘ ξ€Έξ‚€π‘†β‰€Ξ¦βˆ’1ξ€·π‘€π‘˜+1ξ€Έ,π‘₯(π‘˜+1)π‘›βˆ’π‘ ξ‚=π‘₯𝑛(π‘˜+1),βˆ€π‘›β‰₯π‘π‘˜+𝑧.(3.8) By Lemma 2.1, limπ‘›β†’βˆžπ‘₯𝑛(π‘˜+1)=π‘€π‘˜+1. Therefore, there is π‘π‘˜+1β‰₯π‘π‘˜ such that π‘¦π‘›β‰€π‘€π‘˜+1+πœ€/(π‘˜+1)forall𝑛β‰₯π‘π‘˜+1.
Define the other sequence (𝑒𝑛(π‘˜+1)) as follows:𝑒𝑛(π‘˜+1)𝑆=Ξ¦βˆ’1ξ€·π‘šπ‘˜+1ξ€Έ,𝑒(π‘˜+1)π‘›βˆ’π‘ ξ‚,for𝑛β‰₯π‘π‘˜+1,(3.9) where 𝑒𝑛(π‘˜+1)=𝑦𝑛,for𝑛=π‘π‘˜+1,…,π‘π‘˜+1+π‘§βˆ’1.
Once more, by induction on 𝑛β‰₯π‘π‘˜+1+𝑧,𝑦𝑛𝑦β‰₯Ξ¦maxπ‘›βˆ’1,…,π‘¦π‘›βˆ’π‘šξ€Ύ,π‘¦π‘›βˆ’π‘ ξ€Έξ‚€π‘€β‰₯Ξ¦π‘˜+1+πœ€π‘˜+1,π‘¦π‘›βˆ’π‘ ξ‚ξ‚€π‘†β‰₯Ξ¦βˆ’1ξ€·π‘šπ‘˜+1ξ€Έ,𝑒(π‘˜+1)π‘›βˆ’π‘ ξ‚=𝑒𝑛(π‘˜+1),βˆ€π‘›β‰₯π‘π‘˜+1+𝑧.(3.10) By Lemma 2.1, limπ‘›β†’βˆžπ‘’π‘›(π‘˜+1)=π‘šπ‘˜+1. Thus, let π‘π‘˜+1β‰₯π‘π‘˜+1 be greater enough so as 𝑦𝑛β‰₯π‘šπ‘˜+1βˆ’(πœ€/(π‘˜+1))=π‘†βˆ’1(π‘€π‘˜+2) for all 𝑛β‰₯π‘π‘˜+1.
Therefore, we get that there exists π‘π‘˜+1βˆˆβ„• such thatπ‘šπ‘˜+1βˆ’πœ€π‘˜+1β‰€π‘¦π‘›β‰€π‘€π‘˜+1+πœ€π‘˜+1(3.11) for all 𝑛β‰₯π‘π‘˜+1.
By Claim 2, we have limπ‘˜β†’βˆžπ‘šπ‘˜=limπ‘˜β†’βˆžξ‚€π‘šπ‘˜βˆ’πœ€π‘˜ξ‚β‰€liminfπ‘›β†’βˆžπ‘¦π‘›β‰€limsupπ‘›β†’βˆžπ‘¦π‘›β‰€limπ‘˜β†’βˆžξ‚€π‘€π‘˜+πœ€π‘˜ξ‚=limπ‘˜β†’βˆžπ‘€π‘˜.(3.12) This plus Lemma 2.2 leads to limπ‘›β†’βˆžπ‘¦π‘›=βˆšπ‘¦=𝑑2+4𝑝(1+𝛽)βˆ’π‘‘2.(1+𝛽)(3.13) The proof is complete.

4. Applications and Future Work

Next, several examples are presented.

Example 4.1. Let π‘π‘›βˆˆ(0,+∞) for all π‘›βˆˆβ„•0, and πœ™π‘›ξ€·π‘₯1,π‘₯2,…,π‘₯π‘šξ€Έ=π›½π‘π‘›ξƒŽβˆ‘π‘šπ‘–=1π‘₯π‘π‘›π‘–π‘š,π‘›βˆˆβ„•0(4.1) for some 𝛽>0. If π‘Ÿπ‘ž>𝑝 and π‘žβ‰₯π‘Ÿ,π›½βˆˆ(0,+∞) or π‘ž<π‘Ÿ,π›½βˆˆ(0,𝛽0], where 𝛽0=4𝑝/(π‘žβˆ’π‘Ÿ)2+1, then by Theorem 1.1 we conclude that every positive solution to the following non-autonomous difference equation: 𝑦𝑛=𝑝+π‘Ÿπ‘¦π‘›βˆ’π‘ π‘ž+π›½π‘π‘›ξ”ξ€·βˆ‘π‘šπ‘–=1π‘¦π‘π‘›π‘›βˆ’π‘–ξ€Έ/π‘š+π‘¦π‘›βˆ’π‘ ,π‘›βˆˆβ„•0,(4.2) converges to the unique positive equilibrium point βˆšπ‘¦=((π‘žβˆ’π‘Ÿ)2+4𝑝(1+𝛽)+π‘Ÿβˆ’π‘ž)/2(1+𝛽).

Example 4.1 extends Example 2.4 in [2].

Example 4.2. Let πœ™π‘›(π‘₯1,π‘₯2,…,π‘₯π‘š)=𝛽max{π‘₯1,π‘₯2,…,π‘₯π‘š} for all π‘›βˆˆβ„•0, then under the conditions of Theorem 1.1, all positive solutions to the recursive equation 𝑦𝑛=𝑝+π‘Ÿπ‘¦π‘›βˆ’π‘ ξ€½π‘¦π‘ž+𝛽maxπ‘›βˆ’1,π‘¦π‘›βˆ’2,…,π‘¦π‘›βˆ’π‘šξ€Ύ+π‘¦π‘›βˆ’π‘ ,π‘›βˆˆβ„•0,(4.3) converge to the unique positive equilibrium βˆšπ‘¦=((π‘žβˆ’π‘Ÿ)2+4𝑝(1+𝛽)+π‘Ÿβˆ’π‘ž)/2(1+𝛽).

In this paper, the behavior of positive solutions to the case when π‘Ÿπ‘žβ‰₯𝑝,π‘ž<π‘Ÿ,π›½βˆˆ(𝛽0,+∞), where 𝛽0=4𝑝/(π‘žβˆ’π‘Ÿ)2+1, isn't investigated, since we have no further new ideas for the particular case. Through certain calculations, easily we know that the equation π‘†βˆ˜π‘†(π‘₯)=π‘₯ has two different positive roots, if π‘ž<π‘Ÿ,π›½βˆˆ(𝛽0,+∞), which implies limπ‘˜β†’βˆžπ‘€π‘˜>limπ‘˜β†’βˆžπ‘šπ‘˜. From this we propose the following open problem.

Open Problem 4. Is there a positive solution (𝑦𝑛) to (1.6) with condition (1.7) when π‘Ÿπ‘žβ‰₯𝑝,π‘ž<π‘Ÿ,π›½βˆˆ(𝛽0,+∞), where 𝛽0=4𝑝/(π‘žβˆ’π‘Ÿ)2+1, such that (𝑦𝑛) eventually converges to a periodic solution?

Furthermore, the case π‘Ÿπ‘ž<𝑝 for (1.6) is also of extreme value to study.

Acknowledgments

The authors are grateful to the referees for their huge number of valuable suggestions, which considerably improved the presentation in the paper. Besides, the authors thank Professor. Iričanin for very valuable comments regarding this subject. This work was financially supported by National Natural Science Foundation of China (no. 10771227).