Abstract

This paper is concerned with the existence of nontrivial periodic solutions and positive periodic solutions to a nonlinear second-order difference equation. Under some conditions concerning the first positive eigenvalue of the linear equation corresponding to the nonlinear second-order equation, we establish the existence results by using the topological degree and fixed point index theories.

1. Introduction

Let 𝐑, 𝐙, 𝐍 be the sets of real numbers, integers, and natural numbers, respectively. For π‘Ž,π‘βˆˆπ™, define 𝐙[π‘Ž,𝑏]={π‘Ž,π‘Ž+1,…,𝑏} when π‘Žβ‰€π‘.

In this paper, we deal with the existence of nontrivial periodic solutions and positive periodic solutions for a nonlinear second-order difference equationΞ”2𝑒(π‘‘βˆ’1)+π‘ž(𝑑)𝑒(𝑑)=𝑓(𝑑,𝑒(𝑑)),𝑒(𝑑+𝑇)=𝑒(𝑑),π‘‘βˆˆπ™,(1.1) where 𝑇 is a positive integer, π‘žβˆΆπ™β†’π‘ and π‘ž(𝑑+𝑇)=π‘ž(𝑑) for any π‘‘βˆˆπ™, π‘“βˆΆπ™Γ—π‘β†’π‘ is continuous in the second variable and 𝑓(𝑑+𝑇,π‘₯)=𝑓(𝑑,π‘₯) for any (𝑑,π‘₯)βˆˆπ™Γ—π‘, and Δ𝑒(𝑑)=𝑒(𝑑+1)βˆ’π‘’(𝑑), Ξ”2𝑒(𝑑)=Ξ”(Δ𝑒(𝑑)).

From the 𝑇-periodicity of π‘ž and 𝑓, it is easy to verify that the 𝑇-periodic solution to (1.1) is equivalent to the solution to the following periodic boundary value problem (PBVP for short):Ξ”2[],𝑒(π‘‘βˆ’1)+π‘ž(𝑑)𝑒(𝑑)=𝑓(𝑑,𝑒(𝑑)),π‘‘βˆˆπ™1,𝑇𝑒(0)=𝑒(𝑇),Δ𝑒(0)=Δ𝑒(𝑇).(1.2)

The theory of nonlinear difference equations has been widely used to study discrete models appearing in many fields such as computer science, economics, neural network, ecology, and cybernetics. In recent years, there are many papers to study the existence of periodic solutions for second-order difference equations. By using various methods and techniques, for example, fixed point theorems, the method of upper and lower solutions, coincidence degree theory, critical point theory, a series of existence results of periodic solutions have been obtained. We refer the reader to [1–16] and references therein.

In [2], by using the method of upper and lower solutions, Atici and Cabada investigated the existence and uniqueness of periodic solutions for PBVP (1.2) provided that π‘ž(𝑑)≀0, π‘ž(𝑑)β‰’0. Of course the natural question is what would happen if π‘ž(𝑑)β‰₯0. In this paper, we will assume that 0β‰€π‘ž(𝑑)<4sin2ξ‚€πœ‹ξ‚2𝑇,π‘ž(𝑑)β‰’0.(H)And we will use the topological degree and fixed point index theories to establish the existence of nontrivial periodic solutions and positive periodic solutions for (1.1). We note that some ideas of this paper are from [17–19].

This paper is organized as follows. In Section 2, we give Green’s function associated with PBVP (1.2) and then present some preliminary lemmas that will be used to prove our main results. In Sections 4 and 5, by computing the topological degree and fixed point index, we establish some existence results of nontrivial periodic solutions and positive periodic solutions to (1.1). The final section of the paper contains some examples to illustrate our results, and we also remark that the results obtained in previous papers and ours are mutually independent.

2. Preliminaries

In this section, we are going to construct Green’s function associated with PBVP (1.2) and then present some preliminary lemmas. Consider 𝑇-dimensional Banach space 𝐸=𝑒={𝑒(𝑑)}𝑇1[]ξ€ΎβˆΆπ‘’(𝑑)βˆˆπ‘,π‘‘βˆˆπ™1,𝑇(2.1) equipped with the norm ‖𝑒‖=max{|𝑒(𝑑)|,π‘‘βˆˆπ™[1,𝑇]} for all π‘’βˆˆπΈ and the cone 𝑃={π‘’βˆˆπΈβˆΆπ‘’(𝑑)β‰₯0,π‘‘βˆˆπ™[1,𝑇]}. Then the cone 𝑃 is normal and has nonempty interiors int𝑃. It is clear that 𝑃 is also a total cone of 𝐸, that is, 𝐸=π‘ƒβˆ’π‘ƒ, which means the set π‘ƒβˆ’π‘ƒ={π‘’βˆ’π‘£βˆΆπ‘’,π‘£βˆˆπ‘ƒ} is dense in 𝐸. For each 𝑒,π‘£βˆˆπΈ, we write 𝑒≀𝑣 if π‘£βˆ’π‘’βˆˆπ‘ƒ. For π‘Ÿ>0, let π΅π‘Ÿ={π‘’βˆˆπΈβˆΆβ€–π‘’β€–<π‘Ÿ} and πœ•π΅π‘Ÿ={π‘’βˆˆπΈβˆΆβ€–π‘’β€–=π‘Ÿ}. Put 𝑄=maxπ‘‘βˆˆπ™[1,𝑇]π‘ž(𝑑).

Lemma 2.1. If   0<𝑄<4sin2(πœ‹/2𝑇), then, for each π‘£βˆˆπΈ, the problem Ξ”2[],𝑒(π‘‘βˆ’1)+𝑄𝑒(𝑑)=𝑣(𝑑),π‘‘βˆˆπ™1,𝑇𝑒(0)=𝑒(𝑇),Δ𝑒(0)=Δ𝑒(𝑇).(2.2) has a unique solution 𝑒(𝑑)=π‘‡ξ“π‘˜=1[]𝐺(𝑑,π‘˜)𝑣(π‘˜),π‘‘βˆˆπ™0,𝑇+1,(2.3) where 𝐺(𝑑,π‘˜) is given by 𝐺(𝑑,π‘˜)=𝜌(π‘‘βˆ’π‘˜),0β‰€π‘˜β‰€π‘‘β‰€π‘‡+1,𝜌(𝑇+π‘‘βˆ’π‘˜),0β‰€π‘‘β‰€π‘˜β‰€π‘‡+1(2.4) with 𝜌(𝑑)=(1/(2sinπœ‘sin(πœ‘π‘‡/2)))cosπœ‘((𝑇/2)βˆ’π‘‘) and βˆšπœ‘βˆΆ=arctan(𝑄(4βˆ’π‘„)/(2βˆ’π‘„)).

Proof. (i) Taking into account that π‘„βˆˆ(0,4sin2(πœ‹/2𝑇)), an easy computation ensures that βˆšπœ‘βˆΆ=arctan(𝑄(4βˆ’π‘„)/(2βˆ’π‘„))∈(0,(πœ‹/𝑇)). Hence, 𝜌(𝑑)>0,π‘‘βˆˆπ™[0,𝑇]. It is easy to verify that Ξ”2𝜌(π‘‘βˆ’1)+π‘„πœŒ(𝑑)=0,𝜌(0)=𝜌(𝑇),𝜌(1)=𝜌(𝑇+1)+1.(2.5)
Let βˆ‘π‘’(𝑑)=π‘‡π‘˜=1𝐺(𝑑,π‘˜)𝑣(π‘˜),π‘‘βˆˆπ™[0,𝑇+1]. Then 𝑒(𝑑)=π‘‘ξ“π‘˜=1𝜌(π‘‘βˆ’π‘˜)𝑣(π‘˜)+π‘‡ξ“π‘˜=𝑑+1[]𝜌(𝑇+π‘‘βˆ’π‘˜)𝑣(π‘˜),π‘‘βˆˆπ™1,𝑇,(2.6) where, and in what follows, we denote βˆ‘π‘™π‘˜=𝑠π‘₯(π‘˜)=0 when 𝑙<𝑠. We have Δ𝑒(𝑑)=π‘‘ξ“π‘˜=1Ξ”πœŒ(π‘‘βˆ’π‘˜)𝑣(π‘˜)+𝜌(0)𝑣(𝑑+1)+π‘‡ξ“π‘˜=𝑑+1Ξ”πœŒ(𝑇+π‘‘βˆ’π‘˜)𝑣(π‘˜)βˆ’πœŒ(𝑇)𝑣(𝑑+1).(2.7) Then, Ξ”2𝑒(π‘‘βˆ’1)+𝑄𝑒(𝑑)=π‘‘βˆ’1ξ“π‘˜=1ξ€ΊΞ”2ξ€»+𝜌(π‘‘βˆ’π‘˜βˆ’1)+π‘„πœŒ(π‘‘βˆ’π‘˜)𝑣(π‘˜)+π‘„πœŒ(0)𝑣(𝑑)+Ξ”πœŒ(0)𝑣(𝑑)π‘‡ξ“π‘˜=𝑑Δ2ξ€»[].𝜌(𝑇+π‘‘βˆ’π‘˜βˆ’1)+π‘„πœŒ(𝑇+π‘‘βˆ’π‘˜)𝑣(π‘˜)βˆ’π‘„πœŒ(𝑇)𝑣(𝑑)βˆ’Ξ”πœŒ(𝑇)𝑣(𝑑)=𝑣(𝑑),π‘‘βˆˆπ™1,𝑇(2.8) From the definitions of 𝑒 and 𝐺, it is easy to see that 𝑒(0)=𝑒(𝑇) and Δ𝑒(0)=Δ𝑒(𝑇). This completes the proof of the lemma.

From the expression of 𝐺, we see that 𝐺(𝑑,π‘˜)>0 and 𝐺(𝑑,π‘˜)=𝐺(π‘˜,𝑑) for all 𝑑,π‘˜βˆˆπ™[1,𝑇]. Define operators 𝐾,πΏβˆΆπΈβ†’πΈ, respectively, by(𝐾𝑒)(𝑑)=π‘‡ξ“π‘˜=1[],[].𝐺(𝑑,π‘˜)𝑒(π‘˜),π‘’βˆˆπΈ,π‘‘βˆˆπ™1,𝑇(𝐿𝑒)(𝑑)=(π‘„βˆ’π‘ž(𝑑))𝑒(𝑑),π‘’βˆˆπΈ,π‘‘βˆˆπ™1,𝑇(2.9) Obviously, 𝐾(𝑃)βŠ†π‘ƒ and 𝐿(𝑃)βŠ†π‘ƒ. It is clear that 𝐾 is strongly positive, that is, 𝐾(𝑒)∈int𝑃 for π‘’βˆˆπ‘ƒβ§΅{πœƒ}.

Lemma 2.2. Assume that (H) holds. Then, πΎπΏβˆΆπΈβ†’πΈ is a linear completely continuous operator with ‖𝐾𝐿‖<1, and (Iβˆ’πΎπΏ)βˆ’1, the inverse mapping of πΌβˆ’πΎπΏ, exists and is bounded.

Proof. It is obvious that πΎπΏβˆΆπΈβ†’πΈ is a linear completely continuous operator. Since 𝑒0(𝑑)≑1/𝑄 is a solution of PBVP (2.2) with 𝑣0(𝑑)≑1, we have π‘‡ξ“π‘˜=11𝐺(𝑑,π‘˜)=𝑄[],π‘‘βˆˆπ™1,𝑇.(2.10) Then by (H) and the fact that 𝐾 is strongly positive, one has ||||=(𝐾𝐿)𝑒(𝑑)π‘‡ξ“π‘˜=1||||𝐺(𝑑,π‘˜)(π‘„βˆ’π‘ž(π‘˜))𝑒(π‘˜)β‰€β€–π‘’β€–π‘‡ξ“π‘˜=1𝐺(𝑑,π‘˜)(π‘„βˆ’π‘ž(π‘˜))=‖𝑒‖(1βˆ’(πΎπ‘ž)(𝑑))<‖𝑒‖,(2.11) where π‘’βˆˆπΈ, π‘‘βˆˆπ™[1,𝑇]. Hence ‖𝐾𝐿‖<1, and (πΌβˆ’πΎπΏ)βˆ’1, the inverse mapping of πΌβˆ’πΎπΏ, exists and is bounded. The proof of Lemma 2.2 is completed.

Let π‘†βˆΆ=(πΌβˆ’πΎπΏ)βˆ’1𝐾=(𝐼+𝐾𝐿+β‹―+(𝐾𝐿)𝑛+β‹―)𝐾=𝐾+(𝐾𝐿)𝐾+β‹―+(𝐾𝐿)𝑛𝐾+β‹―.(2.12) The complete continuity of 𝐾 together with the continuity of (πΌβˆ’πΎπΏ)βˆ’1 implies that the operator π‘†βˆΆπΈβ†’πΈ is completely continuous.

Lemma 2.3. Assume that (H) holds. Then, for each π‘£βˆˆπΈ, the following linear periodic boundary value problem Ξ”2[],𝑒(π‘‘βˆ’1)+π‘ž(𝑑)𝑒(𝑑)=𝑣(𝑑),π‘‘βˆˆπ™1,𝑇𝑒(0)=𝑒(𝑇),Δ𝑒(0)=Δ𝑒(𝑇)(2.13) has a unique solution {𝑒(𝑑)}𝑇+1𝑑=0,  where 𝑒(𝑑)=(𝑆𝑣)(𝑑),π‘‘βˆˆπ™[1,𝑇], and 𝑒(0)=𝑒(𝑇),𝑒(1)=𝑒(𝑇+1).

Proof. It is easy to see that PBVP (2.13) is equivalent to the operator equation 𝑒=𝐾𝐿𝑒+𝐾𝑣. Therefore, PBVP (2.13) has a unique solution {𝑒(𝑑)}𝑇+1𝑑=0, where 𝑒(𝑑)=(𝑆𝑣)(𝑑)=((πΌβˆ’πΎπΏ)βˆ’1𝐾𝑣)(𝑑),π‘‘βˆˆπ™[1,𝑇], and 𝑒(0)=𝑒(𝑇),𝑒(𝑇+1)=𝑒(1).

Lemma 2.4. Assume that (H) holds. Then, for the operator 𝑆 defined by (2.12), the spectral radius π‘Ÿ(𝑆)>0 and there exists πœ‰βˆˆπΈ with πœ‰>0 on 𝐙[1,𝑇] such that π‘†πœ‰=π‘Ÿ(𝑆)πœ‰ and βˆ‘π‘‡π‘‘=1πœ‰(𝑑)=1/π‘Ÿ(𝑆). Moreover, πœ†1=1/π‘Ÿ(𝑆) is the first positive eigenvalue of the linear PBVP corresponding to PBVP (1.2) and 𝑇𝑑=11(𝑆𝑒)(𝑑)πœ‰(𝑑)=πœ†1𝑇𝑑=1𝑒(𝑑)πœ‰(𝑑),βˆ€π‘’βˆˆπΈ.(2.14)

Proof. An obvious modification of the proof of [13, Lemma 2.3] yields this result. We omit the details here.

Lemma 2.5. Assume that (H) holds. Then, 𝑆(𝑃)βŠ†π‘ƒ1, where 𝑃1=ξƒ―π‘’βˆˆπ‘ƒβˆΆπ‘‡ξ“π‘‘=1𝑒(𝑑)πœ‰(𝑑)β‰₯𝛿‖𝑒‖,𝛿=2sinπœ‘sin(πœ‘π‘‡/2)minπ‘‘βˆˆπ™[1,𝑇]πœ‰(𝑑)πœ†1β€–β€–(πΌβˆ’πΎπΏ)βˆ’1β€–β€–,(2.15) and πœ†1,πœ‰ are given in Lemma 2.4, πœ‘ is given in Lemma 2.1.

Proof. By (2.14), we have, for any π‘’βˆˆπ‘ƒ, 𝑇𝑑=11(𝑆𝑒)(𝑑)πœ‰(𝑑)=πœ†1𝑇𝑑=1𝑒(𝑑)πœ‰(𝑑)β‰₯minπ‘‘βˆˆπ™[1,𝑇]πœ‰(𝑑)πœ†1𝑇𝑑=1𝑒(𝑑).(2.16) On the other hand, one has ‖‖‖𝑆𝑒‖=(πΌβˆ’πΎπΏ)βˆ’1‖‖≀‖‖𝐾𝑒(πΌβˆ’πΎπΏ)βˆ’1‖‖‖‖‖𝐾𝑒‖=(πΌβˆ’πΎπΏ)βˆ’1β€–β€–maxπ‘‡π‘‘βˆˆπ™[1,𝑇]ξ“π‘˜=1≀‖‖𝐺(𝑑,π‘˜)𝑒(π‘˜)(πΌβˆ’πΎπΏ)βˆ’1β€–β€–max𝑑,π‘˜βˆˆπ™[1,𝑇]𝐺(𝑑,π‘˜)π‘‡ξ“π‘˜=1‖‖𝑒(π‘˜)=(πΌβˆ’πΎπΏ)βˆ’1β€–β€–2sinπœ‘sin(πœ‘π‘‡/2)π‘‡ξ“π‘˜=1𝑒(π‘˜).(2.17) Then, 𝑇𝑑=1(𝑆𝑒)(𝑑)πœ‰(𝑑)β‰₯2sinπœ‘sin(πœ‘π‘‡/2)minπ‘‘βˆˆπ™[1,𝑇]πœ‰(𝑑)πœ†1β€–β€–(πΌβˆ’πΎπΏ)βˆ’1‖‖‖𝑆𝑒‖=𝛿‖𝑆𝑒‖.(2.18) Hence, 𝑆(𝑃)βŠ†π‘ƒ1. The proof is complete.

Define operators f,π΄βˆΆπΈβ†’πΈ, respectively, by[],(f𝑒)(𝑑)=𝑓(𝑑,𝑒(𝑑)),π‘’βˆˆπΈ,π‘‘βˆˆπ™1,𝑇𝐴=𝑆f.(2.19) It follows from the continuity of 𝑓 together with the complete continuity of 𝑆 that π΄βˆΆπΈβ†’πΈ is completely continuous.

Remark 2.6. By Lemma 2.3, it is easy to see that 𝑒={𝑒(𝑑)}𝑇𝑑=1∈𝐸 is a fixed point of the operator 𝐴 if and only if 𝑒={𝑒(𝑑)}𝑇+1𝑑=0 is a solution of PBVP (1.2), where 𝑒(0)=𝑒(𝑇),𝑒(1)=𝑒(𝑇+1).

The proofs of the main theorems of this paper are based on the topological degree and fixed point index theories. The following four well-known lemmas in [20–22] are needed in our argument.

Lemma 2.7. Let Ξ© be a bounded open set in a real Banach space 𝐸 with πœƒβˆˆΞ©, let and π΄βˆΆΞ©β†’πΈ be completely continuous. If there exists π‘₯0∈𝐸⧡{πœƒ} such that π‘₯βˆ’π΄π‘₯β‰ πœ‡π‘₯0 for all π‘₯βˆˆπœ•Ξ© and πœ‡β‰₯0, then the topological degree deg(Iβˆ’A,Ξ©,πœƒ)=0.

Lemma 2.8. Let Ξ© be a bounded open set in a real Banach space 𝐸 with πœƒβˆˆΞ©, and let π΄βˆΆΞ©β†’πΈ be completely continuous. If 𝐴π‘₯β‰ πœ‡π‘₯ for all π‘₯βˆˆπœ•Ξ© and πœ‡β‰₯1, then the topological degree deg(πΌβˆ’π΄,Ξ©,πœƒ)=1.

Lemma 2.9. Let 𝐸 be a Banach space and π‘‹βŠ‚πΈ a cone in 𝐸. Assume that Ξ© is a bounded open subset of 𝐸. Suppose that π΄βˆΆπ‘‹βˆ©Ξ©β†’π‘‹ is a completely continuous operator. If there exists π‘₯0βˆˆπ‘‹β§΅{πœƒ} such that π‘₯βˆ’π΄π‘₯β‰ πœ‡π‘₯0 for all π‘₯βˆˆπ‘‹βˆ©πœ•Ξ© and πœ‡β‰₯0, then the fixed point index 𝑖(𝐴,π‘‹βˆ©Ξ©,𝑋)=0.

Lemma 2.10. Let 𝐸 be a Banach space and π‘‹βŠ‚πΈ a cone in 𝐸. Assume that Ξ© is a bounded open subset of 𝐸 with πœƒβˆˆΞ©. Suppose that π΄βˆΆπ‘‹βˆ©Ξ©β†’π‘‹ is a completely continuous operator. If 𝐴π‘₯β‰ πœ‡π‘₯ for all π‘₯βˆˆπ‘‹βˆ©πœ•Ξ© and πœ‡β‰₯1, then the fixed point index 𝑖(𝐴,π‘‹βˆ©Ξ©,𝑋)=1.

3. Existence of Nontrivial Periodic Solutions

Theorem 3.1. Assume that (H) holds. If the following conditions are satisfied limsupπ‘₯β†’βˆžmaxπ‘‘βˆˆπ™[1,𝑇]|||𝑓(𝑑,π‘₯)π‘₯|||<πœ†1,(3.1)liminfπ‘₯β†’0+min[]π‘‘βˆˆπ™1,𝑇𝑓(𝑑,π‘₯)π‘₯>πœ†1,(3.2)limsupπ‘₯β†’0βˆ’max[]π‘‘βˆˆπ™1,𝑇𝑓(𝑑,π‘₯)π‘₯<πœ†1,(3.3) where πœ†1 is the first positive eigenvalue of the linear operator 𝑆 given in Lemma 2.4, then (1.1) has at least one nontrivial periodic solution.

Proof. In view of Remark 2.6, it suffices to prove that the operator 𝐴 has at least fixed point in 𝐸⧡{πœƒ}. It follows from (3.2) and (3.3) that there exist π‘Ÿ>0 and 𝜎∈(0,1) such that 𝑓(𝑑,π‘₯)β‰₯πœ†1(1+𝜎)π‘₯β‰₯πœ†1[][],𝑓(1βˆ’πœŽ)π‘₯,βˆ€π‘₯∈0,π‘Ÿ,π‘‘βˆˆπ™1,𝑇(𝑑,π‘₯)β‰₯πœ†1(1βˆ’πœŽ)π‘₯β‰₯πœ†1[][].(1+𝜎)π‘₯,βˆ€π‘₯βˆˆβˆ’π‘Ÿ,0,π‘‘βˆˆπ™1,𝑇(3.4) By the above two inequalities, we have 𝑓(𝑑,π‘₯)β‰₯πœ†1[],(1+𝜎)π‘₯,βˆ€|π‘₯|β‰€π‘Ÿ,π‘‘βˆˆπ™1,𝑇(3.5)𝑓(𝑑,π‘₯)β‰₯πœ†1[].(1βˆ’πœŽ)π‘₯,βˆ€|π‘₯|β‰€π‘Ÿ,π‘‘βˆˆπ™1,𝑇(3.6) We may suppose that 𝐴 has no fixed point on πœ•π΅π‘Ÿ. Otherwise, the proof is finished. Now we will prove 𝑒≠𝐴𝑒+πœ‡πœ‰,βˆ€π‘’βˆˆπœ•π΅π‘Ÿ,πœ‡β‰₯0,(3.7) where πœ‰ is given in Lemma 2.4. Suppose the contrary; then there exist 𝑒0βˆˆπœ•π΅π‘Ÿ and πœ‡0β‰₯0 such that 𝑒0=𝐴𝑒0+πœ‡0πœ‰. Then πœ‡0>0. Multiplying the equality 𝑒0=𝐴𝑒0+πœ‡0πœ‰ by πœ‰ on its both sides, summing from 1 to 𝑇, and using (2.14) and (3.5), it follows that 𝑇𝑑=1𝑒0(𝑑)πœ‰(𝑑)=𝑇𝑑=1𝐴𝑒0ξ€Έ(𝑑)πœ‰(𝑑)+πœ‡0𝑇𝑑=1πœ‰21(𝑑)=πœ†1𝑇𝑑=1𝑓𝑑,𝑒0ξ€Έ(𝑑)πœ‰(𝑑)+πœ‡0𝑇𝑑=1πœ‰2β‰₯(𝑑)(1+𝜎)𝑇𝑑=1𝑒0(𝑑)πœ‰(𝑑)+πœ‡0𝑇𝑑=1πœ‰2(𝑑).(3.8) Similarly, by (3.6), we know also that 𝑇𝑑=1𝑒0(𝑑)πœ‰(𝑑)β‰₯(1βˆ’πœŽ)𝑇𝑑=1𝑒0(𝑑)πœ‰(𝑑)+πœ‡0𝑇𝑑=1πœ‰2(𝑑).(3.9) If βˆ‘π‘‡π‘‘=1𝑒0(𝑑)πœ‰(𝑑)β‰₯0, then (3.8) implies that βˆ‘π‘‡π‘‘=1πœ‰2(𝑑)≀0, which contradicts πœ‰>0 on 𝐙[1,𝑇]. If βˆ‘π‘‡π‘‘=1𝑒0(𝑑)πœ‰(𝑑)<0, then (3.9) also implies that βˆ‘π‘‡π‘‘=1πœ‰2(𝑑)<0, which is a contradiction. Thus, (3.7) holds. On the basis of Lemma 2.7, we have ξ€·degπΌβˆ’π΄,π΅π‘Ÿξ€Έ,πœƒ=0.(3.10)
From (3.1) it follows that there exist 𝐺>0 and πœ€βˆˆ(0,1) such that |𝑓(𝑑,π‘₯)|<πœ†1(1βˆ’πœ€)|π‘₯| for |π‘₯|>𝐺,π‘‘βˆˆπ™[1,𝑇]. Let 𝐢=supπ‘‘βˆˆπ™[1,𝑇],|π‘₯|≀𝐺𝑓(𝑑,π‘₯). Obviously, ||||𝑓(𝑑,π‘₯)β‰€πœ†1[](1βˆ’πœ€)|π‘₯|+𝐢,βˆ€π‘₯βˆˆπ‘,π‘‘βˆˆπ™1,𝑇.(3.11) Choose 𝑅 such that 𝑅>max{π‘Ÿ,(π‘Žπœ€)βˆ’1𝐢}, where π‘Ž=minπ‘‘βˆˆπ™[1,𝑇]πœ‰(𝑑). We next show π΄π‘’β‰ πœ‡π‘’,forallπ‘’βˆˆπœ•π΅π‘…,πœ‡β‰₯1. In fact, if there exist 𝑒1βˆˆπœ•π΅π‘… and πœ‡1β‰₯1 such that 𝐴𝑒1=πœ‡1𝑒1, then, by the definition of 𝐴 and (3.11), we obtain ||𝑒1||≀||(𝑑)𝐴𝑒1||(𝑑)≀(πΌβˆ’πΎπΏ)βˆ’1ξƒ©π‘‡ξ“π‘˜=1||𝑓𝐺(𝑑,π‘˜)π‘˜,𝑒1ξ€Έ||ξƒͺ(π‘˜)β‰€πœ†1(1βˆ’πœ€)(πΌβˆ’πΎπΏ)βˆ’1ξƒ©π‘‡ξ“π‘˜=1||𝑒𝐺(𝑑,π‘˜)1||ξƒͺ(π‘˜)+𝐢(πΌβˆ’πΎπΏ)π‘‡βˆ’1ξ“π‘˜=1𝐺(𝑑,π‘˜).(3.12) Set 𝑒2(𝑑)=|𝑒1(𝑑)|. Then 𝑒2βˆˆπ‘ƒβ§΅{πœƒ}, and, for any π‘‘βˆˆπ™[1,𝑇],πœ†1(1βˆ’πœ€)(𝑆𝑒2)(𝑑)+𝐢(𝑆𝑣0)(𝑑)β‰₯𝑒2(𝑑), where 𝑣0(𝑑)≑1. Then, by (2.14), we have 𝑇𝑑=1ξ‚Έ(1βˆ’πœ€)𝑒2𝐢(𝑑)+πœ†1𝑣0ξ‚Ή(𝑑)πœ‰(𝑑)=πœ†1(1βˆ’πœ€)𝑇𝑑=1𝑆𝑒2ξ€Έ(𝑑)πœ‰(𝑑)+𝐢𝑇𝑑=1𝑆𝑣0ξ€Έ(𝑑)πœ‰(𝑑)β‰₯𝑇𝑑=1𝑒2(𝑑)πœ‰(𝑑).(3.13) Using the above inequality and noticing that βˆ‘π‘‡π‘‘=1πœ‰(𝑑)=πœ†1 (see Lemma 2.4), we have that πœ€βˆ’1βˆ‘πΆβ‰₯𝑇𝑑=1𝑒2βˆ‘(𝑑)πœ‰(𝑑)β‰₯π‘Žπ‘‡π‘‘=1𝑒2(𝑑). This implies that 𝑅=‖𝑒2βˆ‘β€–β‰€π‘‡π‘‘=1𝑒2(𝑑)≀(π‘Žπœ€)βˆ’1𝐢, which contradicts the choice of 𝑅. It follows from Lemma 2.8 that ξ€·degπΌβˆ’π΄,𝐡𝑅,πœƒ=1.(3.14) According to the additivity of Leray-Schauder degree, by (3.14) and (3.10), we get ξ‚€degπΌβˆ’π΄,π΅π‘…β§΅π΅π‘Ÿξ‚ξ€·,πœƒ=degπΌβˆ’π΄,𝐡𝑅,πœƒβˆ’degπΌβˆ’π΄,π΅π‘Ÿξ€Έ,πœƒ=1,(3.15) which implies that the nonlinear operator 𝐴 has at least one fixed point in π΅π‘…β§΅π΅π‘Ÿ. Thus, (1.1) has at least one nontrivial periodic solution. The proof is complete.

Theorem 3.2. Assume that (H) holds. If the following conditions are satisfied limsupπ‘₯β†’0maxπ‘‘βˆˆπ™[1,𝑇]|||𝑓(𝑑,π‘₯)π‘₯|||<πœ†1,(3.16)liminfπ‘₯β†’+∞minπ‘‘βˆˆπ™[1,𝑇]𝑓(𝑑,π‘₯)π‘₯>πœ†1,(3.17)limsupπ‘₯β†’βˆ’βˆžmaxπ‘‘βˆˆπ™[1,𝑇]𝑓(𝑑,π‘₯)π‘₯<πœ†1,(3.18) where πœ†1 is the first positive eigenvalue of the linear operator 𝑆 given in Lemma 2.4, then (1.1) has at least one nontrivial periodic solution.

Proof. It suffices to prove that the operator 𝐴 has at least fixed point in 𝐸⧡{πœƒ}. From (3.16), we find that there exist πœ€βˆˆ(0,1) and π‘Ÿ>0 such that ||||𝑓(𝑑,π‘₯)β‰€πœ†1[](1βˆ’πœ€)|π‘₯|,βˆ€|π‘₯|β‰€π‘Ÿ,π‘‘βˆˆπ™1,𝑇,(3.19) Now we prove π΄π‘’β‰ πœ‡π‘’,βˆ€π‘’βˆˆπœ•π΅π‘Ÿ,πœ‡β‰₯1.(3.20) If (3.20) does hold, there exist πœ‡0β‰₯1 and 𝑒0βˆˆπœ•π΅π‘Ÿ such that 𝐴𝑒0=πœ‡0𝑒0. Then, by (3.19), we have ||𝑒0||≀||(𝑑)𝐴𝑒0||(𝑑)≀(πΌβˆ’πΎπΏ)βˆ’1ξƒ©π‘‡ξ“π‘˜=1||𝑓𝐺(𝑑,π‘˜)π‘˜,𝑒0ξ€Έ||ξƒͺ(π‘˜)β‰€πœ†1(1βˆ’πœ€)(πΌβˆ’πΎπΏ)βˆ’1ξƒ©π‘‡ξ“π‘˜=1||𝑒𝐺(𝑑,π‘˜)0||ξƒͺ[].(π‘˜),π‘‘βˆˆπ™1,𝑇(3.21) Set 𝑒1(𝑑)=|𝑒0(𝑑)|. Then 𝑒1βˆˆπ‘ƒβ§΅{πœƒ} and πœ†1(1βˆ’πœ€)𝑆𝑒1β‰₯𝑒1. Multiplying this inequality by πœ‰ and summing from 1 to 𝑇, it follows from (2.14) that (1βˆ’πœ€)𝑇𝑑=1𝑒1(𝑑)πœ‰(𝑑)=πœ†1(1βˆ’πœ€)𝑇𝑑=1𝑆𝑒1ξ€Έ(𝑑)πœ‰(𝑑)β‰₯𝑇𝑑=1𝑒1(𝑑)πœ‰(𝑑).(3.22) This together with βˆ‘π‘‡π‘‘=1𝑒1(𝑑)πœ‰(𝑑)>0 implies that 1βˆ’πœ€β‰₯1, which contradicts the choice of πœ€, and so (3.20) holds. It follows from Lemma 2.8 that ξ€·degπΌβˆ’π΄,π΅π‘Ÿξ€Έ,πœƒ=1.(3.23)
By (3.17), (3.18), and the continuity of 𝑓(𝑑,π‘₯) with respect to π‘₯, we know that there exist 𝜎∈(0,1) and 𝐢>0 such that 𝑓(𝑑,π‘₯)β‰₯πœ†1[],𝑓(1+𝜎)π‘₯βˆ’πΆ,βˆ€π‘₯β‰₯0,π‘‘βˆˆπ™1,𝑇(𝑑,π‘₯)β‰₯πœ†1[].(1βˆ’πœŽ)π‘₯βˆ’πΆ,βˆ€π‘₯≀0,π‘‘βˆˆπ™1,𝑇(3.24) Then, 𝑓(𝑑,π‘₯)β‰₯πœ†1(1+𝜎)π‘₯βˆ’πΆβ‰₯πœ†1[],𝑓(1βˆ’πœŽ)π‘₯βˆ’πΆ,βˆ€π‘₯β‰₯0,π‘‘βˆˆπ™1,𝑇(𝑑,π‘₯)β‰₯πœ†1(1βˆ’πœŽ)π‘₯βˆ’πΆβ‰₯πœ†1[].(1+𝜎)π‘₯βˆ’πΆ,βˆ€π‘₯≀0,π‘‘βˆˆπ™1,𝑇(3.25) By the above two inequalities, we have 𝑓(𝑑,π‘₯)β‰₯πœ†1[](1+𝜎)π‘₯βˆ’πΆ,βˆ€π‘₯βˆˆπ‘,π‘‘βˆˆπ™1,𝑇,(3.26)𝑓(𝑑,π‘₯)β‰₯πœ†1[](1βˆ’πœŽ)π‘₯βˆ’πΆ,βˆ€π‘₯βˆˆπ‘,π‘‘βˆˆπ™1,𝑇.(3.27) Set Ξ©={π‘’βˆˆπΈβˆΆπ‘’=𝐴𝑒+πœπœ‰forsome𝜏β‰₯0},(3.28) where πœ‰ is given in Lemma 2.4. We claim that Ξ© is bounded in 𝐸. In fact, for any π‘’βˆˆΞ©, there exists 𝜏β‰₯0 such that 𝑒=𝐴𝑒+πœπœ‰β‰₯𝐴𝑒. Then, by (3.26), we have 𝑒(𝑑)β‰₯πœ†1ξ€·(1+𝜎)(𝑆𝑒)(𝑑)βˆ’πΆπ‘†π‘£0ξ€Έ[](𝑑),π‘‘βˆˆπ™1,𝑇,(3.29) where 𝑣0(𝑑)≑1. Multiplying the above inequality by πœ‰(𝑑) on both sides and summing from 1 to 𝑇, it follows from (2.14) that 𝑇𝑑=1𝑒(𝑑)πœ‰(𝑑)β‰₯πœ†1(1+𝜎)𝑇𝑑=1(𝑆𝑒)(𝑑)πœ‰(𝑑)βˆ’πΆπ‘‡ξ“π‘‘=1𝑆𝑣0ξ€Έ(𝑑)πœ‰(𝑑)=(1+𝜎)𝑇𝑑=1𝐢𝑒(𝑑)πœ‰(𝑑)βˆ’πœ†1𝑇𝑑=1πœ‰(𝑑).(3.30) Then, noticing that βˆ‘π‘‡π‘‘=1πœ‰(𝑑)=πœ†1, we have πœŽπ‘‡ξ“π‘‘=1𝑒(𝑑)πœ‰(𝑑)≀𝐢.(3.31) On the other hand, bearing in mind that πœ‰=πœ†1π‘†πœ‰, we obtain that, for π‘’βˆˆΞ©, π‘’βˆ’πœ†1(1βˆ’πœŽ)𝑆𝑒+𝐢𝑆𝑣0=𝑆fπ‘’βˆ’πœ†1(1βˆ’πœŽ)𝑆𝑒+𝐢𝑆𝑣0ξ€Ί+πœπœ‰=𝑆fπ‘’βˆ’πœ†1(1βˆ’πœŽ)𝑒+𝐢𝑣0+πœπœ†1πœ‰ξ€».(3.32) By (3.27), we obtain that fπ‘’βˆ’πœ†1(1βˆ’πœŽ)𝑒+𝐢𝑣0+πœπœ†1πœ‰βˆˆπ‘ƒ. Lemma 2.5 yields that π‘’βˆ’πœ†1(1βˆ’πœŽ)𝑆𝑒+𝐢𝑆𝑣0βˆˆπ‘ƒ1. Then by (2.14) and (3.31), we obtain that β€–β€–π‘’βˆ’πœ†1(1βˆ’πœŽ)𝑆𝑒+𝐢𝑆𝑣0‖‖≀1𝛿𝑇𝑑=1𝑒(𝑑)βˆ’πœ†1ξ€·(1βˆ’πœŽ)(𝑆𝑒)(𝑑)+𝐢𝑆𝑣0ξ€Έξ€»=1(𝑑)πœ‰(𝑑)𝛿𝑇𝑑=1𝑒𝐢(𝑑)πœ‰(𝑑)βˆ’(1βˆ’πœŽ)𝑒(𝑑)πœ‰(𝑑)+πœ†1πœ‰ξ‚Ήβ‰€(𝑑)2𝐢𝛿.(3.33) This gives β€–β€–π‘’βˆ’πœ†1‖‖≀(1βˆ’πœŽ)𝑆𝑒2𝐢𝛿‖‖+𝐢𝑆𝑣0β€–β€–,βˆ€π‘’βˆˆΞ©.(3.34) Hence, (πΌβˆ’πœ†1(1βˆ’πœŽ)𝑆)(Ξ©)βŠ‚π΅π‘…1, where 𝑅1=2𝐢/𝛿+𝐢‖𝑆𝑣0β€–>0. It follows from πœ†1(1βˆ’πœŽ)π‘Ÿ(𝑆)<1 that πΌβˆ’πœ†1(1βˆ’πœŽ)𝑆 has a linear bounded inverse (πΌβˆ’πœ†1(1βˆ’πœŽ)𝑆)βˆ’1. Therefore, there exists 𝑅2>0 such that ξ€·Ξ©βŠ‚πΌβˆ’πœ†1ξ€Έ(1βˆ’πœŽ)π‘†βˆ’1𝐡𝑅1ξ€ΈβŠ‚π΅π‘…2.(3.35) Then, we can conclude that Ξ© is bounded in 𝐸, proving our claim. Thus, there exists 𝑅>max{π‘Ÿ,𝑅2} such that 𝑒≠𝐴𝑒+πœπœ‰,βˆ€π‘’βˆˆπœ•π΅π‘…,𝜏β‰₯0.(3.36) This and Lemma 2.7 give deg(πΌβˆ’π΄,𝐡𝑅,πœƒ)=0. Taking (3.23) into account, we have deg(πΌβˆ’π΄,π΅π‘…β§΅π΅π‘Ÿ,πœƒ)=βˆ’1. Then, 𝐴 has at least one fixed point in π΅π‘…β§΅π΅π‘Ÿ, which means that (1.1) has at least one nontrivial periodic solution. The proof is completed.

4. Existence of Positive Periodic Solutions

Theorem 4.1. Assume that (H) holds. If the following conditions are satisfied []π‘₯𝑓(𝑑,π‘₯)β‰₯0,βˆ€π‘₯βˆˆπ‘,π‘‘βˆˆπ™1,𝑇,(4.1)limsupπ‘₯β†’βˆžmaxπ‘‘βˆˆπ™[1,𝑇]𝑓(𝑑,π‘₯)π‘₯<πœ†1,(4.2)liminfπ‘₯β†’0minπ‘‘βˆˆπ™[1,𝑇]𝑓(𝑑,π‘₯)π‘₯>πœ†1,(4.3) where πœ†1 is the first positive eigenvalue of the linear operator 𝑆 given in Lemma 2.4, then (1.1) has at least one positive periodic solution and one negative periodic solution.

Proof. From (4.1), we know that 𝐴(𝑃)βŠ‚π‘ƒ. Similar to the proof of Theorem 3.1, it follows from (4.1)–(4.3) and Lemmas 2.9 and 2.10 that there exist 0<π‘Ÿ<𝑅 such that 𝑖𝐴,π΅π‘Ÿξ€Έξ€·βˆ©π‘ƒ,𝑃=0,𝑖𝐴,π΅π‘…ξ€Έβˆ©π‘ƒ,𝑃=1.(4.4) Hence, by the additivity of the fixed point index, we have 𝑖𝐡𝐴,π‘…β§΅π΅π‘Ÿξ‚ξ‚ξ€·βˆ©π‘ƒ,𝑃=𝑖𝐴,π΅π‘…ξ€Έξ€·βˆ©π‘ƒ,π‘ƒβˆ’π‘–π΄,π΅π‘Ÿξ€Έβˆ©π‘ƒ,𝑃=1.(4.5) Then, the nonlinear operator 𝐴 has at least one fixed point on (π΅π‘…β§΅π΅π‘Ÿ)βˆ©π‘ƒ. So (1.1) has at least one positive periodic solution.
Put 𝑓1(𝑑,π‘₯)=βˆ’π‘“(𝑑,βˆ’π‘₯),forall(𝑑,π‘₯)βˆˆπ™[1,𝑇]×𝐑. Define operators f1,𝐴1βˆΆπΈβ†’πΈ, respectively, by ξ€·f1𝑒(𝑑)=𝑓1[],𝐴(𝑑,𝑒(𝑑)),π‘’βˆˆπΈ,π‘‘βˆˆπ™1,𝑇1=𝑆f1.(4.6) Obviously,  𝐴1(𝑃)βŠ‚π‘ƒ. Following almost the same procedure as above, from limsupπ‘₯β†’βˆžmaxπ‘‘βˆˆπ™[1,𝑇](𝑓1(𝑑,π‘₯)/π‘₯)<πœ†1 and liminfπ‘₯β†’0minπ‘‘βˆˆπ™[1,𝑇](𝑓1(𝑑,π‘₯)/π‘₯)>πœ†1, we know also that the nonlinear operator 𝐴1 has at least one fixed point πœβˆˆπ‘ƒβ§΅{πœƒ}. Then 𝐴1𝜁=𝜁. This means that 𝐴(βˆ’πœ)=𝑆(f(βˆ’πœ))=𝑆(βˆ’f1(𝜁))=βˆ’π΄1(𝜁)=βˆ’πœ. Hence, (1.1) has at least one negative periodic solution βˆ’πœ, and the conclusion is achieved.

Theorem 4.2. Assume that (H) and (4.1) hold. If the following conditions are satisfied limsupπ‘₯β†’0maxπ‘‘βˆˆπ™[1,𝑇]𝑓(𝑑,π‘₯)π‘₯<πœ†1,liminfπ‘₯β†’βˆžminπ‘‘βˆˆπ™[1,𝑇]𝑓(𝑑,π‘₯)π‘₯>πœ†1,(4.7) where πœ†1 is the first positive eigenvalue of the linear operator 𝑆 given in Lemma 2.4, then (1.1) has at least one positive periodic solution and one negative periodic solution.

The proof is similar to that of Theorem 4.1 and so we omit it here.

5. Examples

Example 5.1. Let βˆšπ‘“(𝑑,π‘₯)=|π‘₯|. It is easy to see that limsupπ‘₯β†’βˆžmaxπ‘‘βˆˆπ™[1,𝑇]|𝑓(𝑑,π‘₯)/π‘₯|=0<πœ†1,liminfπ‘₯β†’0+minπ‘‘βˆˆπ™[1,𝑇](𝑓(𝑑,π‘₯)/π‘₯)=+∞>πœ†1, and limsupπ‘₯β†’0βˆ’maxπ‘‘βˆˆπ™[1,𝑇](𝑓(𝑑,π‘₯)/π‘₯)=βˆ’βˆž<πœ†1. Then, it follows from Theorem 3.1 that (1.1) has at least one nontrivial periodic solution.

Example 5.2. Let 𝑓(𝑑,π‘₯)=2π‘₯4+π‘₯3. It is not difficult to see that limsupπ‘₯β†’0maxπ‘‘βˆˆπ™[1,𝑇]|𝑓(𝑑,π‘₯)/π‘₯|=0<πœ†1,liminfπ‘₯β†’+∞minπ‘‘βˆˆπ™[1,𝑇](𝑓(𝑑,π‘₯)/π‘₯)=+∞>πœ†1, and limsupπ‘₯β†’βˆ’βˆžmaxπ‘‘βˆˆπ™[1,𝑇](𝑓(𝑑,π‘₯)/π‘₯)=βˆ’βˆž<πœ†1. Then, it follows from Theorem 3.2 that (1.1) has at least one nontrivial periodic solution.

Example 5.3. Let 𝑓(𝑑,π‘₯)=3π‘₯5𝑒π‘₯6. Obviously, π‘₯𝑓(𝑑,π‘₯)β‰₯0 for all  π‘₯βˆˆπ‘ and π‘‘βˆˆπ™[1,𝑇]. Moreover, limsupπ‘₯β†’0maxπ‘‘βˆˆπ™[1,𝑇](𝑓(𝑑,π‘₯)/π‘₯)=0<πœ†1 and liminfπ‘₯β†’βˆžminπ‘‘βˆˆπ™[1,𝑇](𝑓(𝑑,π‘₯)/π‘₯)=+∞>πœ†1. Then it follows from Theorem 4.2 that (1.1) has at least one positive periodic solution and one negative periodic solution.

Remark 5.4. It is easy to see that the existence of nontrivial periodic solutions in Examples 5.1–5.3 could not be obtained by any theorems in [1–16, 19].

Ackowledments

This project is supported by the Natural Science Foundation of Guangdong Province (no. S2011010001900) and by the Scientific Research Plan Item of Fujian Provincial Department of Education (no. JA06035).