Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2011 (2011), Article ID 935034, 21 pages
http://dx.doi.org/10.1155/2011/935034
Research Article

Bivariate EMD-Based Data Adaptive Approach to the Analysis of Climate Variability

1Geophysical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2G7
2Department of Computer Science and Engineering, The University of Rajshahi, Rajshahi 6205, Bangladesh
3Department of Information and Communication Engineering, The University of Tokyo, Tokyo 113-0033, Japan

Received 7 January 2011; Accepted 25 May 2011

Academic Editor: M. De la Sen

Copyright © 2011 Md. Khademul Islam Molla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Radic, Z. Pasaric, and N. Sinik, “Analysis of Zagreb climatological data series using empirically decomposed intrinsic mode functions,” Geofizika, vol. 21, pp. 15–36, 2004. View at Google Scholar
  2. R. Voss, W. May, and E. Roeckner, “Enhanced resolution modelling study on anthropogenic climate change: changes in extremes of the hydrological cycle,” International Journal of Climatology, vol. 22, no. 7, pp. 755–777, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. K. E. Kunkel, R. A. Pielke, and S. A. Changnon, “Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review,” Bulletin of the American Meteorological Society, vol. 80, no. 6, pp. 1077–1098, 1999. View at Google Scholar · View at Scopus
  4. IPCC, Climate Change 1995: The Science of Climate Change, Cambridge University press, Cambridge, UK, 1996.
  5. K. Dairaku, S. Emori, T. Nozawa, N. Yamazaki, M. Hara, and H. Kawase, “Hydrological change under the global warming in Asia with a regional climate model nested in a general circulation model,” in Proceedings of the 3rd International Workshop on Monsoons (IWM '04), vol. 56, 2004.
  6. A. Markham, N. Dudley, and S. Stolton, “Some like it hot. WWF International CH-1196,” Gland Switzerland. Reprint, 1994.
  7. B. C. Bates, S. P. Charles, and J. P. Hughes, “Stochastic downscaling of numerical climate model simulations,” Environmental Modelling and Software, vol. 13, no. 3-4, pp. 325–331, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Rajagopalan, U. Lall, and M. A. Cane, “Anomalous ENSO occurrences: an alternate view,” Journal of Climate, vol. 10, no. 9, pp. 2351–2357, 1997. View at Google Scholar · View at Scopus
  9. B. Rajagopalan, U. Lall, and M. A. Cane, “Comment on reply to the comments of Trenberth and Hurrell,” Bulletin of American Meteorological Society, vol. 80, pp. 2724–2726, 1999. View at Google Scholar
  10. D. E. Harrison and N. K. Larkin, “Darwin sea level pressure, 1876–1996: evidence for climate change?” Geophysical Research Letters, vol. 24, no. 14, pp. 1779–1782, 1997. View at Google Scholar · View at Scopus
  11. C. Wunsch, “The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations,” Bulletin of the American Meteorological Society, vol. 80, no. 2, pp. 245–255, 1999. View at Google Scholar · View at Scopus
  12. F. S. Mpelasoka, A. B. Mullan, and R. G. Heerdegen, “New Zealand climate change information derived by multivariate statistical and artificial neural networks approaches,” International Journal of Climatology, vol. 21, no. 11, pp. 1415–1433, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. D. R. Easterling, G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, “Climate extremes: observations, modeling, and impacts,” Science, vol. 289, no. 5487, pp. 2068–2074, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Uchiyama, A. Noda, S. Yukimoto, and M. Chiba, “Study of the estimate of new climate change scenarios based on new emission scenarios- IPCC AR4 experiments,” CGER’s Supercomputer Activity Report, vol. 12-2003, pp. 51–58, 2005. View at Google Scholar
  15. M. J. Salinger and G. M. Griffiths, “Trends in New Zealand daily temperature and rainfall extremes,” International Journal of Climatology, vol. 21, no. 12, pp. 1437–1452, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Dairaku, S. Emori, and T. Nozawa, “Hydrological projection over Asia under the global warming with a regional climate model nested in the CCSR/NIES AGCM,” CGER’s Supercomputer Activity Report, vol. 12-2003, pp. 13–20, 2005. View at Google Scholar
  17. K. Coughlin and K. K. Tung, “Eleven-year solar cycle signal thourhgout the lower atmosphere,” Journal of Geophysical Research D, vol. 109, no. 21, p. D21105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. H. Glantz, R. W. Katz, and N. Nicholls, Teleconnections linking of worldwide climate anomalies, Cambridge University Press, Cambridge, UK, 1991.
  19. A. V. Fedorov and S. G. Philander, “Is El Nino changing?” Science, vol. 288, no. 5473, pp. 1997–2002, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Wu, E. K. Schneider, Z. Z. Hu, and L. Cao, “The impact of of global warming on ENSO variability in climate records,” Tech. Rep. CTR 110, COLA, 2001. View at Google Scholar
  21. K. Dairaku, S. Emori, T. Nozawa, N. Yamazaki, M. Hara, and H. Kawase, “Regional climate simulation over Asia under the global warming nested in the CCSR/NIES AGCM,” in Proceedings of the Symposium on Water Resource and Its Variability in Asia in the 21st Century, pp. 90–93, 2004.
  22. K. Dairaku, S. Emori, T. Nozawa, N. Yamazaki, M. Hara, and H. Kawase, “Regional climate simulation over Asia under the global warming nested in the CCSR/NIES AGCM,” in Proceedings of the Symposium on Water Resource and Its Variability in Asia in the 21st Century, pp. 756–764, 2004.
  23. S. Alonso-Quesada and M. De La Sen, “Robust adaptive stabilization of linear time-invariant dynamic systems by using fractional-order holds and multirate sampling controls,” Discrete Dynamics in Nature and Society, vol. 2010, Article ID 620546, 27 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  24. M. De la Sen, “On Chebyshev’s systems and non-uniform sampling related to Caputo fractional dynamic time-invariant systems,” Discrete Dynamics in Nature and Society, vol. 2010, Article ID 846590, 24 pages, 2010. View at Publisher · View at Google Scholar
  25. N. E. Huang et al., “The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society A, vol. 454, no. 1971, pp. 903–995, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  26. Z. Wu and N. E. Huang, “A study of the characteristics of white noise using the empirical mode decomposition method,” Proceedings of the Royal Society A, vol. 460, no. 2046, pp. 1597–1611, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. K. Islam Molla, M. S. Rahman, A. Sumi, and P. Banik, “Empirical mode decomposition analysis of climate changes with special reference to rainfall data,” Discrete Dynamics in Nature and Society, vol. 2006, Article ID 45348, 17 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Mak, “Orthogonal wavelet analysis: interannual variability in the sea surface temperature,” Bulletin of the American Meteorological Society, vol. 76, no. 11, pp. 2179–2186, 1995. View at Google Scholar · View at Scopus
  29. H. S. Oh, C. M. Ammann, P. Naveau, D. Nychka, and B. L. Otto-Bliersner, “Multi-resolution time series analysis applied to solar irradiance and climate reconstructions,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 65, no. 2, pp. 191–201, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Tanaka and D. P. Mandic, “Complex empirical mode decomposition,” IEEE Signal Processing Letters, vol. 14, no. 2, pp. 101–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Rilling, P. Flandrin, P. Goncalves, and J. M. Lilly, “Bivariate empirical mode decomposition,” IEEE Signal Processing Letters, vol. 14, no. 12, pp. 936–939, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Umair Bin Altaf, T. Gautama, T. Tanaka, and D. P. Mandic, “Rotation invariant complex empirical mode decomposition,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '07), pp. III1009–III1012, Hawaii, USA, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Flandrin, G. Rilling, and P. Gonçalvés, “Empirical mode decomposition as a filter bank,” IEEE Signal Processing Letters, vol. 11, no. 2, pp. 112–114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Coughlin and K. K. Tung, “QBO Signal found at the extratropical surface through Northern annular modes,” Geophysical Research Letters, vol. 28, no. 24, pp. 4563–4566, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Rilling, P. Flandrin, and P. Goncalves, “Detrending and denoising with empirical mode decomposition,” in Proceedings of the EUSIPCO, Wien, Austria, 2004.