Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 659873, 15 pages
Research Article

Study on Driving Stability of Tank Trucks Based on Equivalent Trammel Pendulum for Liquid Sloshing

College of Traffic, Jilin University, No. 5988 Renmin Street, Changchun 130022, China

Received 17 July 2013; Revised 27 September 2013; Accepted 27 September 2013

Academic Editor: Wuhong Wang

Copyright © 2013 Xian-sheng Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


To investigate the driving stability of tank trucks, an equivalent trammel pendulum was utilized to approximately demonstrate the dynamic characteristics of liquid sloshing in a partially filled tank. The oscillation movement of the trammel pendulum in the tank was described under the tank-fixed coordinate system and its motion equation under the noninertia coordinate system was derived using a Lagrangian function. The motion of the pendulum that expresses the fluid cargo dynamic behavior and that of the solid truck was coupled with each other by the tank. Therefore, a tank truck dynamic model was established using Newton’s first law and the angular momentum. A typical tank truck was selected and used to study its driving stability under steering angle step test. The study on tankers driving stability is of great importance for evaluating tankers driving safety, investing the main impact factor aspecting tankers driving stability, and developing active/passive roll control systems for them.