Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2013, Article ID 712486, 9 pages
Research Article

Adaptive Fault-Tolerant Control for Flight Systems with Input Saturation and Model Mismatch

1Department of Mechanics and Aerospace Engineering, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China
2School of Automation, Chongqing University, Chongqing 400044, China

Received 1 August 2013; Accepted 12 August 2013

Academic Editor: Guanghui Wen

Copyright © 2013 Man Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A novel scheme for fault-tolerant control is proposed in this paper, in which model reference adaptive control method is incorporated with control allocation to cope with simultaneous actuator failures, input saturation, and model mismatch in the flight system. In order to reduce performance degradation caused by actuator failures, the proposed scheme redistributes the control signal to healthy actuators and updates the weighting matrix based on actuator effectiveness. Because of saturation errors resulting from actuator constraints and model mismatch caused by abnormal changes in the system, the original reference model may not be appropriate. Under this circumstance, an adaptive reference model which can also provide satisfactory performance is designed. Simulations of a flight control example are given to illustrate the effectiveness of the proposed scheme.