Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 891048, 8 pages
Research Article

Transit Station Congestion Index Research Based on Pedestrian Simulation and Gray Clustering Evaluation

Key Laboratory of Transportation Engineering, Beijing University of Technology, Beijing 100124, China

Received 2 September 2013; Accepted 13 November 2013

Academic Editor: Geert Wets

Copyright © 2013 Shu-wei Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A congestion phenomenon in a transit station could lead to low transfer efficiency as well as a hidden danger. Effective management of congestion phenomenon shall help to reduce the efficiency decline and danger risk. However, due to the difficulty in acquiring microcosmic pedestrian density, existing researches lack quantitative indicators to reflect congestion degree. This paper aims to solve this problem. Firstly, platform, stair, transfer tunnel, auto fare collection (AFC) machine, and security check machine were chosen as key traffic facilities through large amounts of field investigation. Key facilities could be used to reflect the passenger density of a whole station. Secondly, the pedestrian density change law of each key traffic facility was analyzed using pedestrian simulation, and the load degree calculating method of each facility was defined, respectively, afterwards. Taking pedestrian density as basic data and gray clustering evaluation as algorithm, an index called Transit Station Congestion Index (TSCI) was constructed to reflect the congestion degree of transit stations. Finally, an evaluation demonstration was carried out with five typical transit transfer stations in Beijing, and the evaluation results show that TSCI can objectively reflect the congestion degree of transit stations.