Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2014 (2014), Article ID 328143, 6 pages
Research Article

A New Feigenbaum-Like Chaotic 3D System

1Department of Applied Mathematics, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
2Department of Mathematics and Information Science, Zhoukou Normal University, Zhoukou, Henan 466001, China

Received 30 December 2013; Accepted 10 February 2014; Published 13 March 2014

Academic Editor: Jinde Cao

Copyright © 2014 Huitao Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Based on Sprott N system, a new three-dimensional autonomous system is reported. It is demonstrated to be chaotic in the sense of having positive largest Lyapunov exponent and fractional dimension. To further understand the complex dynamics of the system, some basic properties such as Lyapunov exponents, bifurcation diagram, Poincaré mapping, and period-doubling route to chaos are analyzed with careful numerical simulations. The obtained results also show that the period-doubling sequence of bifurcations leads to a Feigenbaum-like strange attractor.