Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2014, Article ID 365981, 8 pages
http://dx.doi.org/10.1155/2014/365981
Research Article

Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative

1College of Science, Hebei United University, Tangshan 063009, China
2College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
3School of Materials and Metallurgy, Northeast University, Shenyang 110819, China
4Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W 3R4
5School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710048, China
6Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China

Received 4 April 2014; Accepted 28 April 2014; Published 17 July 2014

Academic Editor: Bing Xu

Copyright © 2014 Ai-Min Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Berlin, Germany, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  2. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands, 2006. View at MathSciNet
  3. J. Klafter, S. C. Lim, and R. Metzler, Fractional Dynamics: Recent Advances, World Scientific, 2012.
  4. A. H. Bhrawy and D. Baleanu, “A spectral Legendre-Gauss-LOBatto collocation method for a space-fractional advection diffusion equations with variable coefficients,” Reports on Mathematical Physics, vol. 72, no. 2, pp. 219–233, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. A. H. Bhrawy and M. A. Alghamdi, “A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals,” Boundary Value Problems, vol. 2012, article 62, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Hristov, “An exercise with the He's variation iteration method to a fractional Bernoulli equation arising in a transient conduction with a non-linear boundary heat flux,” International Review of Chemical Engineering, vol. 4, no. 5, pp. 489–497, 2012. View at Google Scholar
  7. J. Hristov, “Approximate solutions to fractional subdiffusion equations,” European Physical Journal: Special Topics, vol. 193, no. 1, pp. 229–243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Momani and Z. Odibat, “Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method,” Applied Mathematics and Computation, vol. 177, no. 2, pp. 488–494, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  9. Z. Zhao and C. Li, “Fractional difference/finite element approximations for the time-space fractional telegraph equation,” Applied Mathematics and Computation, vol. 219, no. 6, pp. 2975–2988, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. F. Liu, M. M. Meerschaert, R. J. McGough, P. Zhuang, and Q. Liu, “Numerical methods for solving the multi-term time-fractional wave-diffusion equation,” Fractional Calculus and Applied Analysis, vol. 16, no. 1, pp. 9–25, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. K. M. Kolwankar and A. D. Gangal, “Fractional differentiability of nowhere differentiable functions and dimensions,” Chaos, vol. 6, no. 4, pp. 505–513, 1996. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. X.-J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher, Hong Kong, 2011.
  13. X.-J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, 2012.
  14. G. A. Anastassiou and O. Duman, Advances in Applied Mathematics and Approximation Theory, Springer, New York, NY, USA, 2013.
  15. X.-J. Yang, H. M. Srivastava, J.-H. He, and D. Baleanu, “Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives,” Physics Letters A, vol. 377, no. 28–30, pp. 1696–1700, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  16. X. Yang and D. Baleanu, “Fractal heat conduction problem solved by local fractional variation iteration method,” Thermal Science, vol. 17, no. 2, pp. 625–628, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. A. M. Yang, Y. Z. Zhang, and X. L. Zhang, “The non-differentiable solution for local fractional tricomi equation arising in fractal transonic flow by local fractional variational iteration method,” Advances in Mathematical Physics, vol. 2014, Article ID 983254, 6 pages, 2014. View at Publisher · View at Google Scholar
  18. S. P. Yan, H. Jafari, and H. K. Jassim, “Local fractional Adomain decomposition and function decomposition methods for Laplace equation within local fractional operators,” Advances in Mathematical Physics, vol. 2014, Article ID 161580, 7 pages, 2014. View at Publisher · View at Google Scholar
  19. A. M. Yang, Z. S. Chen, H. M. Srivastava, and X.-J. Yang, “Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving local fractional derivative operators,” Abstract and Applied Analysis, vol. 2013, Article ID 259125, 6 pages, 2013. View at Publisher · View at Google Scholar
  20. Y. Z. Zhang, A. M. Yang, and Y. Long, “Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform,” Thermal Science, vol. 18, no. 2, pp. 677–681, 2014. View at Google Scholar
  21. C. G. Zhao, A. M. Yang, H. Jafari, and A. Haghbin, “The Yang-Laplace transform for solving the {IVP}s with local fractional derivative,” Abstract and Applied Analysis, vol. 2014, Article ID 386459, 5 pages, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  22. S. Wang, Y. J. Yang, and H. K. Jassim, “Local fractional function decomposition method for solving inhomogeneous wave equations with local fractional derivative,” Abstract and Applied Analysis, vol. 2014, Article ID 176395, 7 pages, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  23. C. F. Liu, S. S. Kong, and S. J. Yuan, “Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem,” Thermal Science, vol. 17, no. 3, pp. 715–721, 2013. View at Publisher · View at Google Scholar