Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2014 (2014), Article ID 432096, 7 pages
Research Article

A Bilevel Programming Model to Optimize Train Operation Based on Satisfaction for an Intercity Rail Line

School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China

Received 12 December 2013; Revised 5 January 2014; Accepted 14 January 2014; Published 20 February 2014

Academic Editor: Wuhong Wang

Copyright © 2014 Zhipeng Huang and Huimin Niu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Mandel, M. Gaudry, and W. Rothengatter, “A disaggregate box-cox logit mode choice model of intercity passenger travel in Germany and its implications for high-speed rail demand forecasts,” Annals of Regional Science, vol. 31, no. 2, pp. 99–120, 1997. View at Google Scholar · View at Scopus
  2. C. J. Zhao, Study on Theory and Application of Inter-City Rail Network Planning, China Academy of Railway Science, Beijing, China, 2009.
  3. E. Cascetta and P. Coppola, “An elastic demand schedule-based multimodal assignment model for the simulation of high speed rail (HSR) systems,” EURO Journal on Transportation and Logistics, vol. 1, no. 1-2, pp. 3–27, 2012. View at Google Scholar
  4. F. Shi, Z. C. Huang, W. L. Zhou, and L. B. Deng, “Optimization on departure time distribution of passenger trains based on user equilibrium analysis,” Journal of Railways Science and Engineering, vol. 5, no. 6, pp. 69–75, 2008. View at Google Scholar
  5. H. Q. Peng and Y. J. Zhu, “Intercity train operation schemes based on passenger flow dynamic assignment,” Journal of Transportation Systems Engineering and Information Technology, vol. 13, no. 1, pp. 111–117, 2013. View at Google Scholar
  6. H. M. Niu and X. S. Zhou, “Optimizing urban rail timetable under time-dependent demand and oversaturated conditions,” Transportation Research C, vol. 36, pp. 212–230, 2013. View at Google Scholar
  7. Y.-Q. He, H.-Z. Zhang, B.-H. Mao, and T.-S. Chen, “Multiobjective bi-level programming model of making train working plan for passenger-only line,” Journal of the China Railway Society, vol. 28, no. 5, pp. 6–10, 2006. View at Google Scholar · View at Scopus
  8. F. Shi, L. Deng, and L. Huo, “Bi-level programming model and algorithm of passenger train operation plan,” China Railway Science, vol. 28, no. 3, pp. 110–116, 2007. View at Google Scholar · View at Scopus
  9. Y.-H. Chang, C.-H. Yeh, and C.-C. Shen, “A multiobjective model for passenger train services planning: application to Taiwan's high-speed rail line,” Transportation Research B, vol. 34, no. 2, pp. 91–106, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Huang and H. Niu, “Study on the train operation optimization of passenger dedicated lines based on satisfaction,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 451201, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. G. Luo, E. L. Liu, and J. Wang, “Resource planning optimization in network schedule using genetic algorithms,” Joural of Tianjin University, vol. 32, no. 2, pp. 179–183, 2004. View at Google Scholar