Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2014, Article ID 839731, 8 pages
http://dx.doi.org/10.1155/2014/839731
Research Article

A Nonparametric Operational Risk Modeling Approach Based on Cornish-Fisher Expansion

1Institution of Policy and Management, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100190, China
3Business School, University of Hull, Hull Hu6 7RX, UK
4School of Business Administration, Shandong University of Finance and Economics, Jinan, Shandong 250014, China
5Industrial Bank CO., Ltd., Fuzhou, Fujian 350003, China

Received 7 February 2014; Accepted 11 March 2014; Published 31 March 2014

Academic Editor: Fenghua Wen

Copyright © 2014 Xiaoqian Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Basel Committee on Banking Supervision, Working Paper on the Regulatory Treatment of Operational Risk, Bank for International Settlements, Basel, Switzerland, 2001.
  2. J. Li, J. Feng, X. Sun, and M. Li, “Risk integration mechanisms and approaches in banking industry,” International Journal of Information Technology & Decision Making, vol. 11, no. 6, pp. 1183–1213, 2012. View at Google Scholar
  3. Basel Committee on Banking Supervision, International Convergence of Capital Measurement and Capital Standards: A Revised Framework, Bank for International Settlements, Basel, Switzerland, 2006.
  4. F. Aue and M. Kalkbrener, “LDA at work: Deutsche Bank's approach to quantifying operational risk,” The Journal of Operational Risk, vol. 1, no. 4, pp. 49–95, 2007. View at Google Scholar
  5. J. Li, J. Feng, and J. Chen, “A piecewise-defined severity distribution-based loss distribution approach to estimate operational risk: evidence from chinese national commercial banks,” International Journal of Information Technology & Decision Making, vol. 8, no. 4, pp. 727–747, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Chapelle, Y. Crama, G. Hübner, and J.-P. Peters, “Practical methods for measuring and managing operational risk in the financial sector: a clinical study,” Journal of Banking & Finance, vol. 32, no. 6, pp. 1049–1061, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Frachot, P. Georges, and T. Roncalli, “Loss distribution approach for operational risk,” Working Paper, Groupe de Recherche Operationnelle, Credit Lyonnais, Paris, France, 2001. View at Google Scholar
  8. A. Mori, T. Kimata, and T. Nagafuji, “The effect of the choice of the loss severity distribution and the parameter estimation method on operational risk measurement,” Working Paper, Risk Assessment Section, Financial Systems and Bank Examination Department, Bank of Japan, 2007. View at Google Scholar
  9. J. Feng, J. Li, L. Gao, and Z. Hua, “A combination model for operational risk estimation in a Chinese banking industry case,” The Journal of Operational Risk, vol. 7, no. 2, pp. 17–39, 2012. View at Google Scholar
  10. R. Giacometti, S. Rachev, A. Chernobai, M. Bertocchi, and G. Consigli, “Heavy-tailed distributional model for operational losses,” The Journal of Operational Risk, vol. 2, no. 1, pp. 55–90, 2007. View at Google Scholar
  11. M. Degen, P. Embrechts, and D. D. Lambrigger, “The quantitative modeling of operational risk: between g-and-h and EVT,” ASTIN Bulletin, vol. 37, no. 2, pp. 265–291, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. V. Chavez-Demoulin, P. Embrechts, and J. Nešlehová, “Quantitative models for operational risk: extremes, dependence and aggregation,” Journal of Banking & Finance, vol. 30, no. 10, pp. 2635–2658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Embrechts, H. Furrer, and R. Kaufmann, “Quantifying regulatory capital for operational risk,” Derivatives Use, Trading & Regulation, vol. 9, no. 3, pp. 217–233, 2003. View at Google Scholar
  14. J. Li, J. Feng, and L. Gao, Modeling on Operational Risk of Commercial Bank: Theory, Method and Empirical Study, Science Press, Beijing, China, 2013 (Chinese).
  15. S. R. Jaschke, “The Cornish-Fisher expansion in the context of Delta-Gamma-normal approximations,” The Journal of Risk, vol. 4, no. 4, pp. 33–52, 2002. View at Google Scholar
  16. E. A. Cornish and R. A. Fisher, “Moments and cumulants in the specification of distributions,” Review of the International Statistical Institute, vol. 5, no. 4, pp. 307–320, 1938. View at Google Scholar
  17. P. Jorion, Value at Risk: The New Benchmark for Managing Financial Risk, McGraw-Hill, New York, NY, USA, 3rd edition, 2007.
  18. J. Li, X. Zhu, D. Wu, C. F. Lee, J. Feng, and Y. Shi, “On the aggregation of credit, market and operational risks,” Review of Quantitative Finance and Accounting, 2013. View at Publisher · View at Google Scholar
  19. K. Aas, X. K. Dimakos, and A. Oksendal, “Risk capital aggregation,” Risk Management, vol. 9, no. 2, pp. 82–107, 2007. View at Google Scholar
  20. Basel Committee on Banking Supervision, Operational Risk-Supervisory Guidelines for the Advanced Measurement Approaches, Bank for International Settlements, Basel, Switzerland, 2011.