Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2015 (2015), Article ID 141325, 7 pages
http://dx.doi.org/10.1155/2015/141325
Research Article

On Fractional Orthonormal Polynomials of a Discrete Variable

1Departamento de Matemática Aplicada II, E.E. Telecomunicación, Universidade de Vigo, 36310 Vigo, Spain
2African Institute for Mathematical Sciences (AIMS), Limbe Crystal Gardens, P.O. Box 608, Southwest Region, Cameroon
3Facultade de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
4Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Received 25 March 2015; Accepted 10 June 2015

Academic Editor: Guang Zhang

Copyright © 2015 I. Area et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Ross, “Fractional calculus,” Mathematics Magazine, vol. 50, no. 3, pp. 115–122, 1977. View at Publisher · View at Google Scholar
  2. G. W. Leibniz, “Letter from Hanover, Germany; to G.F.A. L'Hôpital,” in Mathematische Schriften 1849, vol. 2, pp. 301–302, Olms, Hidesheim, Germany, 1695, reprinted in 1962. View at Google Scholar
  3. C. Li, F. Zeng, and F. Liu, “Spectral approximations to the fractional integral and derivative,” Fractional Calculus and Applied Analysis, vol. 15, no. 3, pp. 383–406, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. A. M. Legendre, “Sur l'attraction des sphéroïdes homogénes,” Mémoires de Mathématique et de Physique, Présentés à l'Académie Royale des Sciences, par Divers Savans, et lus dans ses Assemblées, vol. 10, pp. 411–434, 1785. View at Google Scholar
  5. NIST Digital Library of Mathematical Functions, Release 1.0.8, 2014, http://dlmf.nist.gov/.
  6. M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, Cambridge, UK, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  7. R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer, Berlin, Germany, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  8. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, Germany, 1991. View at Publisher · View at Google Scholar · View at MathSciNet
  9. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, Eds., NIST Handbook of Mathematical Functions, Cambridge University Press, New York, NY, USA, 2010.
  10. M. R. Rapaić, T. B. Šekara, and V. Govedarica, “A novel class of fractionally orthogonal quasi-polynomials and new fractional quadrature formulas,” Applied Mathematics and Computation, vol. 245, pp. 206–219, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  11. I. Area, J. Losada, and A. Manintchap, “On some fractional Pearson equations,” Fractional Caculus and Applied Analysis, vol. 18, no. 5, 2015. View at Google Scholar
  12. P. L. Chebyshev, “Sur l'interpolation des valeurs équidistantes,” Mémoires de l'Académie Impériale des Sciences de Saint Pétersbourg, vol. 25, no. 5, pp. 219–242, 1875, Oeuvres, vol. 2, 219–242. View at Google Scholar
  13. A. B. J. Kuijlaars and E. A. Rakhmanov, “Zero distributions for discrete orthogonal polynomials,” Journal of Computational and Applied Mathematics, vol. 99, no. 1-2, pp. 255–274, 1998. View at Google Scholar
  14. I. Area, D. K. Dimitrov, E. Godoy, and V. Paschoa, “Approximate calculation of sums I: bounds for the zeros of Gram polynomials,” SIAM Journal on Numerical Analysis, vol. 52, no. 4, pp. 1867–1886, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  15. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, vol. 2, Robert E Krieger Publishing, Melbourne, Fla, USA, 1981.
  16. G. Szegö, Orthogonal Polynomials, American Mathematical Society, Providence, RI, USA, 4th edition, 1975.
  17. J. P. Gram, “Ueber die Entwickelung reeller Functionen in Reihen mittelst der Methode der kleinsten Quadrate,” Journal für die reine und angewandte Mathematik, vol. 1883, no. 94, pp. 41–73, 2009. View at Publisher · View at Google Scholar
  18. J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, and P. D. Miller, Discrete Orthogonal Polynomials, vol. 164 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, USA, 2007. View at MathSciNet
  19. G. Dahlquist and Å. Björck, Numerical Methods in Scientific Computing, vol. 1, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 2008.
  20. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, Elsevier Science, Amsterdam, The Netherlands, 2006. View at MathSciNet
  21. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993.
  22. K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974. View at MathSciNet
  23. S. Samko, A. A. Kilbas, and O. Marichev, Fractional Integrals and Derivatives, Taylor & Francis, 1993.
  24. F. M. Atici, A. Cabada, and J. B. Ferreiro, “First order difference equations with maxima and nonlinear functional boundary value conditions,” Journal of Difference Equations and Applications, vol. 12, no. 6, pp. 565–576, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  25. F. M. Atici and P. W. Eloe, “A transform method in discrete fractional calculus,” International Journal of Difference Equations, vol. 2, no. 2, pp. 165–176, 2007. View at Google Scholar · View at MathSciNet
  26. J. Cermak and T. Kisela, “Note on a discretization of a linear fractional differential equation,” Mathematica Bohemica, vol. 135, no. 2, pp. 179–188, 2010. View at Google Scholar · View at MathSciNet
  27. J. Čermák, T. Kisela, and L. Nechvátal, “Discrete Mittag-Leffler functions in linear fractional difference equations,” Abstract and Applied Analysis, vol. 2011, Article ID 565067, 21 pages, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  28. K. S. Miller and B. Ross, “Fractional difference calculus,” in Univalent Functions, Fractional Calculus, and Their Applications (Kōriyama, 1988), Ellis Horwood Series in Mathematics and Its Applications, pp. 139–152, Horwood, Chichester, UK, 1989. View at Google Scholar
  29. M. D. Ortigueira, “Fractional central differences and derivatives,” Journal of Vibration and Control, vol. 14, no. 9-10, pp. 1255–1266, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  30. J. Tariboon, S. K. Ntouyas, and P. Agarwal, “New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations,” Advances in Difference Equations, vol. 2015, article 18, 2015. View at Publisher · View at Google Scholar · View at MathSciNet
  31. I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, 1999. View at MathSciNet
  32. T. Abdeljawad, D. Baleanu, F. Jarad, and R. P. Agarwal, “Fractional sums and differences with binomial coefficients,” Discrete Dynamics in Nature and Society, vol. 2013, Article ID 104173, 6 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  33. J. Diblík, M. Fećkan, and M. Posipíšil, “Nonexistence of periodic solutions and S-asymptotically periodic solutions in fractional difference equations,” Applied Mathematics and Computation, vol. 257, pp. 230–240, 2015. View at Publisher · View at Google Scholar · View at MathSciNet
  34. T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach Science Publishers, New York, NY, USA, 1978. View at MathSciNet
  35. Wolfram Research Inc, Mathematica, version 10.0.2.0, Wolfram Research Inc, Champaign, Ill, USA, 2010.