Table of Contents Author Guidelines Submit a Manuscript
Discrete Dynamics in Nature and Society
Volume 2015, Article ID 542507, 8 pages
http://dx.doi.org/10.1155/2015/542507
Research Article

Simulation of a Vibrant Membrane Using a 2-Dimensional Cellular Automaton

1Modeling and Simulation Laboratory, Centro de Investigación en Computación, Instituto Politécnico Nacional, Avenida Juan de Dios Bátiz, Esquina Miguel Othón de Mendizábal, Colonia Nueva Industrial Vallejo, 07738 Gustavo A. Madero, DF, Mexico
2Postgraduate and Research Section, Escuela Superior de Cómputo, Instituto Politécnico Nacional, Avenida Juan de Dios Bátiz, Esquina Miguel Othón de Mendizábal, Colonia Lindavista, 07738 Gustavo A. Madero, DF, Mexico
3Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, 07730 Gustavo A. Madero, DF, Mexico

Received 21 April 2015; Revised 4 June 2015; Accepted 8 June 2015

Academic Editor: Tetsuji Tokihiro

Copyright © 2015 I. Huerta-Trujillo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Paulos, Beyond Numeracy, Vintage Series, Vintage Books, 1992.
  2. T. Toffoli, “Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics,” Physica D. Nonlinear Phenomena, vol. 10, no. 1-2, pp. 117–127, 1984. View at Publisher · View at Google Scholar · View at MathSciNet
  3. S. Wolfram, “Statistical mechanics of cellular automata,” Reviews of Modern Physics, vol. 55, no. 3, pp. 601–644, 1983. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. S. Wolfram, A New Kind of Science, Wolfram Media, Champaign, Ill, USA, 2002.
  5. S. Wolfram, “Cellular automata as models of complexity,” Nature, vol. 311, no. 5985, pp. 419–424, 1984. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Chopard and M. Droz, Cellular Automata Modeling of Physical Systems, Cambridge University Press, New York, NY, USA, 1998. View at Publisher · View at Google Scholar · View at MathSciNet
  7. S. Kawamura, T. Yoshida, H. Minamoto, and Z. Hossain, “Simulation of the nonlinear vibration of a string using the Cellular Automata based on the reflection rule,” Applied Acoustics, vol. 67, no. 2, pp. 93–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. V. Walstijn and E. Mullan, “Time-domain simulation of rectangular membrane vibrations with 1-d digital waveguides,” in Proceedings of the 2011 Forum Acusticum, pp. 449–454, Aalborg, Denmark, 2011.
  9. J. Kari, “Theory of cellular automata: a survey,” Theoretical Computer Science, vol. 334, no. 1–3, pp. 3–33, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. S. H. White, A. M. del Rey, and G. R. Sánchez, “Modeling epidemics using cellular automata,” Applied Mathematics and Computation, vol. 186, no. 1, pp. 193–202, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. A. Ilachinski, Cellular Automata: A Discrete Universe, World Scientific, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  12. M. Kutrib, R. Vollmar, and T. Worsch, “Introduction to the special issue on cellular automata,” Parallel Computing, vol. 23, no. 11, pp. 1567–1576, 1997. View at Google Scholar
  13. I. Huerta-Trujillo, J. Chimal-Eguía, N. Sánchez-Salas, and J. Martínez-Nuño, “Modelo de autómata celular 1-dimensional para una EDP hiperbólica,” Research in Computing Science, vol. 58, pp. 407–423, 2012. View at Google Scholar
  14. W. Glabisz, “Cellular automata in nonlinear string vibration,” Archives of Civil and Mechanical Engineering, vol. 10, no. 1, pp. 27–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Glabisz, “Cellular automata in nonlinear vibration problems of two-parameter elastic foundation,” Archives of Civil and Mechanical Engineering, vol. 11, no. 2, pp. 285–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Huerta-Trujillo, E. Castillo-Montiel, J. Chimal-Eguía, N. Sánchez-Salas, and J. Martínez-Nuño, “AC 2-dimensional como modelo de una membrana vibrante,” Research in Computing Science, vol. 83, pp. 117–130, 2014. View at Google Scholar
  17. L. Kinsler, Fundamentals of Acoustics, Wiley, 2000.
  18. S. Kawamura, M. Shirashige, and T. Iwatsubo, “Simulation of the nonlinear vibration of a string using the cellular automation method,” Applied Acoustics, vol. 66, no. 1, pp. 77–87, 2005. View at Publisher · View at Google Scholar · View at Scopus