Research Article  Open Access
Alicia Cordero, José L. Hueso, Eulalia Martínez, Juan R. Torregrosa, "Multistep HighOrder Methods for Nonlinear Equations Using PadéLike Approximants", Discrete Dynamics in Nature and Society, vol. 2017, Article ID 3204652, 6 pages, 2017. https://doi.org/10.1155/2017/3204652
Multistep HighOrder Methods for Nonlinear Equations Using PadéLike Approximants
Abstract
We present new highorder optimal iterative methods for solving a nonlinear equation, , by using Padélike approximants. We compose optimal methods of order 4 with Newton’s step and substitute the derivative by using an appropriate rational approximant, getting optimal methods of order 8. In the same way, increasing the degree of the approximant, we obtain optimal methods of order 16. We also perform different numerical tests that confirm the theoretical results.
1. Introduction
Many applied problems in different fields of science and technology require to find the solution of a nonlinear equation. Iterative methods are used to approximate its solutions. The performance of an iterative method can be measured by the efficiency index introduced by Ostrowski in [1]. In this sense, Kung and Traub conjectured in [2] that a multistep method without memory performing functional evaluations per iteration can have at most convergence order , in which case it is said to be optimal.
Recently, different optimal eighthorder methods, with 4 functional evaluations per step, have been published. A very interesting survey can be found in [3]. Some of them are a generalization of the wellknown Ostrowski’s optimal method of order four [4–7]. In [8] the authors start from a thirdorder method due to PotraPták, combine this scheme with Newton’s method using “frozen” derivative, and estimate the new functional evaluation. The procedure designed in [9] uses weightfunctions and “frozen” derivative for the development of the schemes. As far as we know, beyond the family described by Kung and Traub in [2], only in [10] a general technique to obtain new optimal methods has been presented; the authors use inverse interpolation and methods of sixteenth order have also been obtained.
While computational engineering has achieved significant maturity, computational costs can be extremely large when high accuracy simulations are required. The development of a practical highorder solution method could diminish this problem by significantly decreasing the computational time required to achieve an acceptable error level (see, e.g., [11]).
The existence of an extensive literature on higher order methods (see, e.g., [3, 12] and the references therein) reveals that they are only limited by the nature of the problem to be solved: in particular, the numerical solutions of nonlinear equations and systems are needed in the study of dynamical models of chemical reactors [13], or in radioactive transfer [14]. Moreover, many of numerical applications use high precision in their computations; in [15], highprecision calculations are used to solve interpolation problems in Astronomy; in [16] the authors describe the use of arbitrary precision computations to improve the results obtained in climate simulations; the results of these numerical experiments show that the highorder methods associated with a multiprecision arithmetic floating point are very useful, because it yields a clear reduction in iterations. A motivation for an arbitrary precision in interval methods can be found in [17], in particular for the calculation of zeros of nonlinear functions.
The objective of this paper is to present a general procedure to obtain optimal order methods for starting from optimal order methods for . The procedure consists in composing optimal methods of order 4 that use two evaluations of the function and one of the derivative, with Newton’s step and approximating the derivative in this last step by using an adequate rational function which allows duplicating the convergence order, introducing only one new functional evaluation per iteration.
In Section 2, we describe the process to generate the new eighthorder methods and establish their convergence order. In Section 3, the same procedure is used to obtain sixteenthorder methods by increasing the approximant degree. Finally, in Section 4, we collect several optimal methods of order 4 that are the starting point for our new methods and present numerical experiments that confirm the theoretical results.
2. Optimal Methods of Order 8
In this section, we describe a procedure that allows us to obtain new optimal methods of order 8, starting from optimal schemes of order 4. Let us denote by the set of iteration functions corresponding to optimal methods of order .
Consider the threestep method given by where
In order to simplify the notation, we will omit the argument in the iterative process, so that we will write as and .
Obviously, this threestep method has order 8, being a composition of schemes of orders 4 and 2, respectively (see [2], Th. 2.4), but the method is not optimal because it introduces two new functional evaluations in the last step.
Thus, to maintain the optimality, we substitute with the derivative of the seconddegree approximant verifying the conditions
From the first condition one has . Substituting in (4)–(6) we obtain the following linear system: where, as usual, denotes the divided difference of order 1, . Applying Gaussian elimination the following reduced system is obtained
In the divided differences with a repeated argument, one places the derivative instead of an undetermined quotient. The coefficients of the approximant are obtained by backward substitution. Then, the derivative of the approximant in is
Substituting by this value, we obtain an iterative method, , defined by where
This method only uses 4 functional evaluations per iteration. Showing that it is of order 8 we will prove that it is optimal in KungTraub’s sense.
Theorem 1. Let be a simple root of a function sufficiently differentiable in an open interval . For an close enough to , the method defined by (11)–(13) has optimal convergence order .
Proof. Let be the error of ; that is, , , for . Then, by the definition of each step of the iterative method, we haveConsider the expansion of around where , for ; then,so that using (11) and (14)Substituting (19) in the expansion of around we getUsing in (15) that , we writefor some constants, . Substituting (21) in Taylor’s expansion of , we obtainUsing (17), (18), (20), and (22) in the determination of the coefficients of the rational approximant and in the expression of its derivative (9) givesNow, Taylor’s expansion of in gives and the fact that is of fourth order allows us to establish Using this expression and (23) one can writeThe order of the method is obtained by computing Using (26) we haveFrom (19) it can be deduced thatSo, it is clear thatBy substituting (30) in (28) and using that one has which proves that method has optimal order .
3. Optimal Methods of Order 16
The idea of this section is to extend the former process performing a new step to obtain optimal methods of order starting from optimal methods of order . For the method can be defined as follows:with where and (See [2, 5, 6, 8, 14, 16, 18] for some optimal eighthorder methods.)
Then, we start from a method that, in its first three steps, performs 4 functional evaluations and another additional evaluation in the last step that allows us to construct the following rational approximant:
The coefficients are determined by imposing the following conditions: Similarly to the former case, . Substituting in (36)–(39) we obtain the linear system
The remaining coefficients are obtained by reducing the system to triangular form and solving it by backward substitution
The derivative of the rational approximant in is
As in the previous case, this expression allows us to establish thatand taking into account the fact that we get Similarly to the eighthorder case, from this expression it results that has optimal convergence order .
4. Numerical Experiments
First of all, we consider some optimal fourorder methods that we have used for developing highorder methods with the procedure described; all of them use Newton’s step as a predictor and another evaluation of function .(1)Ostrowski’s method (see [1])(2)The family of King’s method (see [18])(3)An optimal variant of PotraPták’s method (see [8]) (4)Maheshwari method (see [19])
Now we check the performance of the methods and generated by (5) and (32), taking the different methods described above.
We have chosen the following examples:(a).(b).
We have performed the computations in MATLAB in variable precision arithmetic with 1000 digits of mantissa.
Tables 1 and 2 show the distance for the first three iterations of the new order 8 and 16 methods, respectively. The last column, when we know the exact solution , that is, for example, (a), depicts the computational convergence order (see [20]) and for example (b), we compute the approximated computational convergence order (see [21])


The results from Tables 3 and 4 correspond to an equation without exact solution, so that is computed, instead of the actual error. In both cases, the numerical results support the optimality of the new methods, according to the proven theoretical results.


5. Conclusions
In this paper, we develop highorder iterative methods to solve nonlinear equations. The procedure to obtain the iteration functions is rigorously deduced and can be generalized. There are numerous applications where these schemes are needed because it is necessary to use high precision in their computations, as occurs in dynamical models of chemical reactors and in radioactive transfer and also highprecision calculations are used to solve interpolation problems in Astronomy and so forth. Moreover, the methods presented are optimal in terms of efficiency; this fact makes them very competitive.
Conflicts of Interest
The authors declare that there are no conflicts of interest regarding the publication of this paper.
Acknowledgments
This work has been supported by Ministerio de Ciencia e Innovación de España MTM201452016C202P and Generalitat Valenciana PROMETEO/2016/089.
References
 A. M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, London, UK, 1966. View at: MathSciNet
 H. T. Kung and J. F. Traub, “Optimal order of onepoint and multipoint iteration,” Journal of the Association for Computing Machinery, vol. 21, pp. 643–651, 1974. View at: Publisher Site  Google Scholar  MathSciNet
 M. S. Petković, B. Neta, L. D. Petković, and J. Džunić, Multipoint Methods for Solving Nonlinear Equations, Academic Press, Amsterdam, The Netherlands, 2013. View at: Publisher Site  MathSciNet
 W. Bi, H. Ren, and Q. Wu, “Threestep iterative methods with eighthorder convergence for solving nonlinear equations,” Journal of Computational and Applied Mathematics, vol. 225, no. 1, pp. 105–112, 2009. View at: Publisher Site  Google Scholar  MathSciNet
 A. Cordero, J. R. Torregrosa, and M. a. Vassileva, “Threestep iterative methods with optimal eighthorder convergence,” Journal of Computational and Applied Mathematics, vol. 235, no. 10, pp. 3189–3194, 2011. View at: Publisher Site  Google Scholar  MathSciNet
 L. Liu and X. Wang, “Eighthorder methods with high efficiency index for solving nonlinear equations,” Applied Mathematics and Computation, vol. 215, no. 9, pp. 3449–3454, 2010. View at: Publisher Site  Google Scholar  MathSciNet
 J. R. Sharma and R. Sharma, “A new family of modified Ostrowski's methods with accelerated eighth order convergence,” Numerical Algorithms, vol. 54, no. 4, pp. 445–458, 2010. View at: Publisher Site  Google Scholar  MathSciNet
 A. Cordero, J. L. Hueso, E. Martínez, and J. R. Torregrosa, “New modifications of PotraPták’s method with optimal fourth and eighth orders of convergence,” Journal of Computational and Applied Mathematics, vol. 234, no. 10, pp. 2969–2976, 2010. View at: Publisher Site  Google Scholar  MathSciNet
 X. Wang and L. Liu, “New eighthorder iterative methods for solving nonlinear equations,” Journal of Computational and Applied Mathematics, vol. 234, no. 5, pp. 1611–1620, 2010. View at: Publisher Site  Google Scholar  MathSciNet
 B. Neta and M. S. Petković, “Construction of optimal order nonlinear solvers using inverse interpolation,” Applied Mathematics and Computation, vol. 217, no. 6, pp. 2448–2455, 2010. View at: Publisher Site  Google Scholar  MathSciNet
 K. J. Fidkowski, T. A. Oliver, J. Lu, and D. L. Darmofal, “pMultigrid solution of highorder discontinuous Galerkin discretizations of the compressible NavierStokes equations,” Journal of Computational Physics, vol. 207, no. 1, pp. 92–113, 2005. View at: Publisher Site  Google Scholar
 S. Amat and S. Busquier, Advances in Iterative Methods for Nonlinear Equations, vol. 10, Springer, Berlin, Germany, 2016. View at: Publisher Site  MathSciNet
 D. D. Bruns and J. E. Bailey, “Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state,” Chemical Engineering Science, vol. 32, no. 3, pp. 257–264, 1977. View at: Publisher Site  Google Scholar
 J. A. Ezquerro, J. M. Gutiérrez, M. A. Hernández, and M. A. Salanova, “Chebyshevlike methods and quadratic equations,” Revue d’Analyse Numérique et de Théorie de l’Approximation, vol. 28, no. 1, pp. 23–35, 1999. View at: Google Scholar  MathSciNet
 Y. Zhang and P. Huang, “Highprecision Timeinterval Measurement Techniques and Methods,” Progress in Astronomy, vol. 24, no. 1, pp. 1–15, 2006. View at: Google Scholar
 Y. He and C. Ding, “Using accurate arithmetics to improve numerical reproducibility and stability in parallel applications,” The Journal of Supercomputing, vol. 18, no. 3, pp. 259–277, 2001. View at: Publisher Site  Google Scholar
 N. Revol and F. Rouillier, “Motivations for an arbitrary precision interval arithmetic and the MPFI library,” Reliable Computing, vol. 11, no. 4, pp. 275–290, 2005. View at: Publisher Site  Google Scholar  MathSciNet
 R. F. King, “A family of fourth order methods for nonlinear equations,” SIAM Journal on Numerical Analysis, vol. 10, pp. 876–879, 1973. View at: Publisher Site  Google Scholar  MathSciNet
 A. K. Maheshwari, “A fourth order iterative method for solving nonlinear equations,” Applied Mathematics and Computation, vol. 211, no. 2, pp. 383–391, 2009. View at: Publisher Site  Google Scholar  MathSciNet
 S. Weerakoon and T. G. Fernando, “A variant of Newton's method with accelerated thirdorder convergence,” Applied Mathematics Letters. An International Journal of Rapid Publication, vol. 13, no. 8, pp. 87–93, 2000. View at: Publisher Site  Google Scholar  MathSciNet
 A. Cordero and J. R. Torregrosa, “Variants of Newton's method using fifthorder quadrature formulas,” Applied Mathematics and Computation, vol. 190, no. 1, pp. 686–698, 2007. View at: Publisher Site  Google Scholar  MathSciNet
Copyright
Copyright © 2017 Alicia Cordero et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.