Disease Markers
 Journal metrics
Acceptance rate34%
Submission to final decision88 days
Acceptance to publication43 days
CiteScore4.100
Journal Citation Indicator0.770
Impact Factor3.434

A Comparison of GFR Calculated by Cockcroft-Gault vs. MDRD Formula in the Prognostic Assessment of Patients with Acute Pulmonary Embolism

Read the full article

 Journal profile

Disease Markers publishes papers related to the identification of disease markers, the elucidation of their role and mechanism, as well as their application in the prognosis, diagnosis and treatment of diseases.

 Editor spotlight

Chief Editor Paola Gazzaniga is an Associate Professor in the Department of Molecular Medicine at Sapienza University of Rome, Italy. Her core research focuses on liquid biopsies in patients with solid tumors.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Integrative Molecular Analyses of an Individual Transcription Factor-Based Genomic Model for Lung Cancer Prognosis

Objective. Precision medicine with molecular profiles has revolutionized the management of lung cancer contributing to improved prognosis. Herein, we aimed to uncover the gene expression profiling of transcription factors (TFs) in lung cancer as well as to develop a TF-based genomic model. Methods. We retrospectively curated lung cancer patients from public databases. Through comparing mRNA expression profiling between lung cancer and normal specimens, specific TFs were determined. Thereafter, a TF genomic model was developed with univariate Cox regression and stepwise multivariable Cox analyses, which was verified through the GSE72094 dataset. Gene set enrichment analyses (GSEA) were presented. Downstream targets of TFs were predicted with ChEA, JASPAR, and MotifMap projects, and their biological significance was investigated through the clusterProfiler algorithm. Results. In the TCGA cohort, we proposed a TF-based genomic model, comprised of SATB2, HLF, and NPAS2. Lung cancer individuals were remarkably stratified into high- and low-risk groups. Survival analyses uncovered that high-risk populations presented unfavorable survival outcomes. ROCs confirmed the excellent predictive potency in patients’ prognosis. Additionally, this model was an independent prognostic indicator in accordance with multivariate analyses. The clinical implication of the model was well verified in an independent dataset. High risk score was in relation to carcinogenic pathways. Downstream targets were characterized by immune and carcinogenic activation. Conclusion. The proposed TF genomic model acts as a promising marker for estimation of lung cancer patients’ outcomes. Prospective research is required for testing the clinical utility of the model in individualized management of lung cancer.

Research Article

Transneuronal Degeneration in the Visual Pathway of Rats following Acute Retinal Ischemia/Reperfusion

The maintenance of visual function not only requires the normal structure and function of neurons but also depends on the effective signal propagation of synapses in visual pathways. Synapses emerge alterations of plasticity in the early stages of neuronal damage and affect signal transmission, which leads to transneuronal degeneration. In the present study, rat model of acute retinal ischemia/reperfusion (RI/R) was established to observe the morphological changes of neuronal soma and synapses in the inner plexiform layer (IPL), outer plexiform layer (OPL), and dorsal lateral geniculate nucleus (dLGN) after retinal injury. We found transneuronal degeneration in the visual pathways following RI/R concretely presented as edema and mitochondrial hyperplasia of neuronal soma in retina, demyelination, and heterotypic protein clusters of axons in LGN. Meanwhile, small immature synapses formed, and there are asynchronous changes between pre- and postsynaptic components in synapses. This evidence demonstrated that transneuronal degeneration exists in RI/R injury, which may be one of the key reasons for the progressive deterioration of visual function after the injury is removed.

Research Article

Metabolomic Profiling Identified Serum Metabolite Biomarkers and Related Metabolic Pathways of Colorectal Cancer

Background. The screening and early detection of colorectal cancer (CRC) still remain a challenge due to the lack of reliable and effective serum biomarkers. Thus, this study is aimed at identifying serum biomarkers of CRC that could be used to distinguish CRC from healthy controls. Methods. A prospective 1 : 2 individual matching case-control study was performed which included 50 healthy control subjects and 98 CRC patients. Untargeted metabolomic profiling was conducted with liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify CRC-related metabolites and metabolic pathways. Results. In total, 178 metabolites were detected, and an orthogonal partial least-squares-discriminant analysis (OPLS-DA) model was useful to distinguish CRC patients from healthy controls. Nine metabolites showed significantly differential serum levels in CRC patients under the conditions of variable importance in projection , using Student’s -test, and fold change or ≤0.5. The above nine metabolites were 3-hydroxybutyric acid, hexadecanedioic acid, succinic acid semialdehyde, 4-dodecylbenzenesulfonic acid, prostaglandin B2, 2-pyrocatechuic acid, xanthoxylin, 12-hydroxydodecanoic acid, and formylanthranilic acid. Four potential biomarkers were identified to diagnose CRC through ROC curves: hexadecanedioic acid, 4-dodecylbenzenesulfonic acid, 2-pyrocatechuic acid, and formylanthranilic acid. All AUC values of these four serum biomarkers were above 0.70. In addition, the exploratory analysis of metabolic pathways revealed the activated states for the vitamin B metabolic pathway and the alanine, aspartate, and glutamate metabolic pathways associated with CRC. Conclusion. The 4 identified potential metabolic biomarkers could discriminate CRC patients from healthy controls, and the 2 metabolic pathways may be activated in the CRC tissues.

Research Article

Cox-2 Antagonizes the Protective Effect of Sevoflurane on Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis through Inhibiting the Akt Pathway

Objective. To uncover the protective role of sevoflurane on hypoxia/reoxygenation-induced cardiomyocyte apoptosis through the protein kinase B (Akt) pathway. Methods. An in vitro hypoxia/reoxygenation (H/R) model was established in cardiomyocyte cell line H9c2. Sevoflurane (SEV) was administrated in H9c2 cells during the reoxygenation period. Viability, layered double hydroxide (LDH) release, and apoptosis in H9c2 cells were determined to assess H/R-induced cell damage. Relative levels of apoptosis-associated genes were examined. Moreover, phosphorylation of Akt was determined. Results. H/R injury declined viability and enhanced LDH release and apoptotic rate in H9c2 cells. Cyclooxygenase-2 (Cox-2) was upregulated following H/R injury, which was partially reversed by SEV treatment. In addition, SEV treatment reversed changes in viability and LDH release owing to H/R injury in H9c2 cells, which were further aggravated by overexpression of Cox-2. The Akt pathway was inhibited in H9c2 cells overexpressing Cox-2. Conclusions. Sevoflurane protects cardiomyocyte damage following H/R via the Akt pathway, and its protective effect was abolished by overexpression of Cox-2.

Research Article

MicroRNA-146-5p Promotes Pulmonary Artery Endothelial Cell Proliferation under Hypoxic Conditions through Regulating USP3

Objective. MicroRNAs play a pivotal role in the progression of pulmonary hypertension (PAH). Although microRNA-146-5p is specifically expressed in many diseases, but in PAH, its role remains elusive. Patients and Methods. 30 patients with PAH and 20 healthy volunteers in our hospital were enrolled, and their serum samples were extracted for the detection of microRNA-146-5p and ubiquitin specific protease 3 (USP3) expression. In addition, the interaction between microRNA-146-5p and USP3 was examined by luciferase reporting assay. Furthermore, the potential mechanism was explored by cell counting kit-8 (CCK-8), 5-ethynyl-2-deoxyuridine (EdU), and Western blotting experiments. Results. It was found that microRNA-146-5p was higher in PAH patients than in healthy volunteers. Meanwhile, in hypoxia-induced human pulmonary artery endothelial cell lines (HPAECs), microRNA-146-5p expression was dramatically downregulated while USP3 protein expression was conversely upregulated. Under hypoxic conditions, microRNA-146-5p mimics was able to prompt the growth of HPAECs. In addition, after overexpression of microRNA-146-5p, luciferase reporting assay revealed a reduced luciferase activity of the reporter gene containing the USP3 3-untranslated region, and a reduction of USP3 protein expression was also confirmed. However, USP3 overexpression partially attenuated the impact of upregulated microRNA-146-5p on the proliferation capacity of HPAECs. Conclusions. MicroRNA-146-5p was able to enhance the proliferation ability of HPAEC cells under hypoxic conditions through targeting USP3, suggesting the microRNA-146-5p/USP3 axis may act as a target for PAH treatment.

Research Article

MicroRNA-383-5p Regulates Oxidative Stress in Mice with Acute Myocardial Infarction through the AMPK Signaling Pathway via PFKM

Objective. The purpose of this study is to explore the regulating role of microRNA-383-5p (miR-383-5p) in oxidative stress after acute myocardial infarction (AMI) through AMPK pathway via phosphofructokinase muscle-type (PFKM). Methods. We established the AMI model, and the model mice were injected with miR-383-5p agomir to study the effect of miR-383-5p in AMPK signaling pathways. The target gene for miR-383-5p was reported to be PFKM, so we hypothesized that overexpression of miR-383-5p inhibits activation of the AMPK signaling pathway. Results. In this research, we found that overexpression of miR-383-5p decreases myocardial oxidative stress, myocardial apoptosis, the expression level of PFKM malondialdehyde (MDA), and reactive oxygen species (ROS) in the myocardial tissues after AMI, and finally, AMI-induced cardiac systolic and diastolic function could be improved.Conclusion. This study demonstrated that miR-383-5p could reduce the oxidative stress after AMI through AMPK signaling pathway by targeting PFKM.

Disease Markers
 Journal metrics
Acceptance rate34%
Submission to final decision88 days
Acceptance to publication43 days
CiteScore4.100
Journal Citation Indicator0.770
Impact Factor3.434
 Submit

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.