Disease Markers

Disease Markers / 2009 / Article

Open Access

Volume 27 |Article ID 267581 | 11 pages | https://doi.org/10.3233/DMA-2009-0651

Molecular Profiling of Glatiramer Acetate Early Treatment Effects in Multiple Sclerosis

Received28 Oct 2009
Accepted28 Oct 2009


Background: Glatiramer acetate (GA, Copaxone®) has beneficial effects on the clinical course of relapsing-remitting multiple sclerosis (RRMS). However, the exact molecular mechanisms of GA effects are only partially understood.Objective: To characterized GA molecular effects in RRMS patients within 3 months of treatment by microarray profiling of peripheral blood mononuclear cells (PBMC).Methods: Gene-expression profiles were determined in RRMS patients before and at 3 months after initiation of GA treatment using Affimetrix (U133A-2) microarrays containing 14,500 well-characterized human genes. Most informative genes (MIGs) of GA-induced biological convergent pathways operating in RRMS were constructed using gene functional annotation, enrichment analysis and pathway reconstruction bioinformatic softwares. Verification at the mRNA and protein level was performed by qRT-PCR and FACS.Results: GA induced a specific gene expression molecular signature that included altered expression of 480 genes within 3 months of treatment; 262 genes were up-regulated, and 218 genes were down-regulated. The main convergent mechanisms of GA effects were related to antigen-activated apoptosis, inflammation, adhesion, and MHC class-I antigen presentation.Conclusions: Our findings demonstrate that GA treatment induces alternations of immunomodulatory gene expression patterns that are important for suppression of disease activity already at three months of treatment and can be used as molecular markers of GA activity.

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

483 Views | 481 Downloads | 21 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.