Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 35, Issue 5, Pages 561–566
http://dx.doi.org/10.1155/2013/217948
Review Article

Circulating microRNAs: A Potential Role in Diagnosis and Prognosis of Acute Myocardial Infarction

1Cardiology Department, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410078, China
2Cardiovascular Division, Department of Medicine, Center for Vascular Biology and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02108, USA
3Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China

Received 14 August 2013; Accepted 30 September 2013

Academic Editor: Marco Peluso

Copyright © 2013 Ali Sheikh Md Sayed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. D. White and D. P. Chew, “Acute myocardial infarction,” The Lancet, vol. 372, no. 9638, pp. 570–584, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. V. L. Roger, A. S. Go, D. M. Lloyd-Jones et al., “Heart disease and stroke statistics—2011 update: a report from the American heart association,” Circulation, vol. 123, no. 4, pp. e18–e209, 2011. View at Publisher · View at Google Scholar
  3. B. Lindahl, “Acute coronary syndrome—the present and future role of biomarkers,” Clinical Chemistry and Laboratory Medicine, vol. 23, no. 3, pp. 1–8, 2013. View at Google Scholar
  4. S. S. C. Chim, T. K. F. Shing, E. C. W. Hung et al., “Detection and characterization of placental microRNAs in maternal plasma,” Clinical Chemistry, vol. 54, no. 3, pp. 482–490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. K. Wang, J. Q. Zhu, J. T. Zhang et al., “Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans,” European Heart Journal, vol. 31, no. 6, pp. 659–666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Widera, S. K. Gupta, J. M. Lorenzen et al., “Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome,” Journal of Molecular and Cellular Cardiology, vol. 51, no. 5, pp. 872–875, 2011. View at Publisher · View at Google Scholar
  7. S. Fichtlscherer, S. de Rosa, H. Fox et al., “Circulating microRNAs in patients with coronary artery disease,” Circulation Research, vol. 107, no. 5, pp. 677–684, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. J. Tijsen, E. E. Creemers, P. D. Moerland et al., “MiR423-5p as a circulating biomarker for heart failure,” Circulation Research, vol. 106, no. 6, pp. 1035–1039, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. W. Pan, Y. J. Lu, and B. F. Yang, “MicroRNAs: a novel class of potential therapeutic targets for cardiovascular diseases,” Acta Pharmacologica Sinica, vol. 31, no. 1, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Baek, J. Villén, C. Shin, F. D. Camargo, S. P. Gygi, and D. P. Bartel, “The impact of microRNAs on protein output,” Nature, vol. 455, no. 7209, pp. 64–71, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. E. M. Small and E. N. Olson, “Pervasive roles of microRNAs in cardiovascular biology,” Nature, vol. 469, no. 7330, pp. 336–342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Skog, T. Würdinger, S. van Rijn et al., “Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers,” Nature Cell Biology, vol. 10, no. 12, pp. 1470–1476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Camussi, M. C. Deregibus, S. Bruno, V. Cantaluppi, and L. Biancone, “Exosomes/microvesicles as a mechanism of cell-to-cell communication,” Kidney International, vol. 78, no. 9, pp. 838–848, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Kosaka, H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, and T. Ochiya, “Secretory mechanisms and intercellular transfer of microRNAs in living cells,” The Journal of Biological Chemistry, vol. 285, no. 23, pp. 17442–17452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. P. Hunter, N. Ismail, X. Zhang et al., “Detection of microRNA expression in human peripheral blood microvesicles,” PLoS ONE, vol. 3, no. 11, Article ID e3694, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Gilad, E. Meiri, Y. Yogev et al., “Serum microRNAs are promising novel biomarkers,” PLoS ONE, vol. 3, no. 9, Article ID e3148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Turchinovich, L. Weiz, A. Langheinz, and B. Burwinkel, “Characterization of extracellular circulating microRNA,” Nucleic Acids Research, vol. 39, no. 16, pp. 7223–7233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. N. B. Y. Tsui, E. K. O. Ng, and Y. M. D. Lo, “Stability of endogenous and added RNA in blood specimens, serum, and plasma,” Clinical Chemistry, vol. 48, no. 10, pp. 1647–1653, 2002. View at Google Scholar · View at Scopus
  20. K. Wang, S. Zhang, J. Weber, D. Baxter, and D. J. Galas, “Export of microRNAs and microRNA-protective protein by mammalian cells,” Nucleic Acids Research, vol. 38, no. 20, pp. 7248–7259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. K. B. Margulies, “MicroRNAs as novel myocardial biomarkers,” Clinical Chemistry, vol. 55, no. 11, pp. 1897–1899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. E. van Rooij, L. B. Sutherland, X. Qi, J. A. Richardson, J. Hill, and E. N. Olson, “Control of stress-dependent cardiac growth and gene expression by a microRNA,” Science, vol. 316, no. 5824, pp. 575–579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. T. E. Callis, K. Pandya, H. Y. Seok et al., “MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice,” Journal of Clinical Investigation, vol. 119, no. 9, pp. 2772–2786, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. P. Malizia and D. Z. Wang, “MicroRNAs in cardiomyocyte development,” Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol. 3, no. 2, pp. 183–190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Ji, R. Takahashi, Y. Hiura, G. Hirokawa, Y. Fukushima, and N. Iwai, “Plasma miR-208 as a biomarker of myocardial injury,” Clinical Chemistry, vol. 55, no. 11, pp. 1944–1949, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. O. Gidlöf, P. Andersson, J. van der Pals, M. Götberg, and D. Erlinge, “Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples,” Cardiology, vol. 118, no. 4, pp. 217–226, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. F. Corsten, R. Dennert, S. Jochems et al., “Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease,” Circulation: Cardiovascular Genetics, vol. 3, no. 6, pp. 499–506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Adachi, M. Nakanishi, Y. Otsuka et al., “Plasma microRNA 499 as a biomarker of acute myocardial infarction,” Clinical Chemistry, vol. 56, no. 7, pp. 1183–1185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Q. Li, M. F. Zhang, H. Y. Wen et al., “Comparing the diagnostic values of circulating microRNAs and cardiac troponin T in patients with acute myocardial infarction,” Clinics, vol. 68, no. 1, pp. 75–80, 2013. View at Google Scholar
  30. J. T. C. Shieh, Y. Huang, J. Gilmore, and D. Srivastava, “Elevated miR-499 levels blunt the cardiac stress response,” PLoS ONE, vol. 6, no. 5, Article ID e19481, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Devaux, M. Vausort, E. Goretti et al., “Use of circulating microRNAs to diagnose acute myocardial infarction,” Clinical Chemistry, vol. 58, no. 3, pp. 559–567, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Olivieri, R. Antonicelli, M. Lorenzi et al., “Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction,” International Journal of Cardiology, vol. 167, no. 2, pp. 531–536, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Gidlöf, J. G. Smith, K. Miyazu et al., “Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction,” BMC Cardiovascular Disorders, vol. 13, article 12, 2013. View at Publisher · View at Google Scholar
  34. J. Ai, R. Zhang, Y. Li et al., “Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction,” Biochemical and Biophysical Research Communications, vol. 391, no. 1, pp. 73–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. D'Alessandra, P. Devanna, F. Limana et al., “Circulating microRNAs are new and sensitive biomarkers of myocardial infarction,” European Heart Journal, vol. 31, no. 22, pp. 2765–2773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Cheng, N. Tan, J. Yang et al., “A translational study of circulating cell-free microRNA-1 in acute myocardial infarction,” Clinical Science, vol. 119, no. 2, pp. 87–95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Meder, A. Keller, B. Vogel et al., “MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction,” Basic Research in Cardiology, vol. 106, no. 1, pp. 13–23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. C. van Solingen, L. Seghers, R. Bijkerk et al., “Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis,” Journal of Cellular and Molecular Medicine, vol. 13, no. 8, pp. 1577–1585, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Mocharla, S. Briand, G. Giannotti et al., “AngiomiR-126 expression and secretion from circulating CD34+ and CD14+ PBMCs: role for proangiogenic effects and alterations in type 2 diabetics,” Blood, vol. 121, no. 1, pp. 226–236, 2013. View at Publisher · View at Google Scholar
  40. G. Long, F. Wang, Q. Duan et al., “Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction,” International Journal of Biological Sciences, vol. 8, no. 6, pp. 811–818, 2012. View at Publisher · View at Google Scholar
  41. S. de Rosa, S. Fichtlscherer, R. Lehmann, B. Assmus, S. Dimmeler, and A. M. Zeiher, “Transcoronary concentration gradients of circulating MicroRNAs,” Circulation, vol. 124, no. 18, pp. 1936–1944, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Zampetaki, P. Willeit, L. Tilling et al., “Prospective study on circulating MicroRNAs and risk of myocardial infarction,” Journal of the American College of Cardiology, vol. 60, no. 4, pp. 290–299, 2012. View at Publisher · View at Google Scholar
  43. R. Wang, N. Li, Y. Zhang, Y. Ran, and J. Pu, “Circulating micro RNAs are promising novel biomarkers of acute myocardial infarction,” Internal Medicine, vol. 50, no. 17, pp. 1789–1795, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. R. Zile, S. M. Mehurg, J. E. Arroyo, R. E. Stroud, S. M. DeSantis, and F. G. Spinale, “Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction,” Circulation: Cardiovascular Genetics, vol. 4, no. 6, pp. 614–619, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Long, F. Wang, Q. Duan et al., “Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction,” PLoS ONE, vol. 7, no. 12, Article ID e50926, 2012. View at Publisher · View at Google Scholar
  46. J. Fang, X. W. Song, J. Tian et al., “Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes,” Apoptosis, vol. 17, no. 4, pp. 410–423, 2012. View at Publisher · View at Google Scholar · View at Scopus