Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 35, Issue 5, Pages 573–579
http://dx.doi.org/10.1155/2013/392578
Research Article

CD90- (Thy-1-) High Selection Enhances Reprogramming Capacity of Murine Adipose-Derived Mesenchymal Stem Cells

1Department of Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
2Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
3Department of Surgery and Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima 737-0023, Japan
4Department of Complementary and Alternative Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan

Received 18 June 2013; Revised 7 September 2013; Accepted 12 September 2013

Academic Editor: Chao Hung Hung

Copyright © 2013 Koichi Kawamoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Wakao, M. Kitada, Y. Kuroda et al., “Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 24, pp. 9875–9880, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Eminli, A. Foudi, M. Stadtfeld et al., “Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells,” Nature Genetics, vol. 41, no. 9, pp. 968–976, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. T. Chung, C. Liu, J. S. Hyun et al., “CD90 (Thy-1)-positive selection enhances osteogenic capacity of human adipose-derived stromal cells,” Tissue Engineering A, vol. 19, pp. 989–997, 2013. View at Google Scholar
  5. K. Le Blanc and D. Mougiakakos, “Multipotent mesenchymal stromal cells and the innate immune system,” Nature Reviews Immunology, vol. 12, no. 5, pp. 383–396, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Konno, A. Hamabe, S. Hasegawa et al., “Adipose-derived mesenchymal stem cells and regenerative medicine,” Development, Growth and Differentiation, vol. 55, pp. 309–318, 2013. View at Google Scholar
  7. Y. Ohmura, M. Tanemura, N. Kawaguchi et al., “Combined transplantation of pancreatic islets and adipose tissue-derived stem cells enhances the survival and insulin function of islet grafts in diabetic mice,” Transplantation, vol. 90, no. 12, pp. 1366–1373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Y. Yeung, K. L. Seeberger, T. Kin et al., “Human mesenchymal stem cells protect human islets from pro-inflammatory cytokines,” PLoS ONE, vol. 7, Article ID e38189, 2012. View at Google Scholar
  9. J. Tan, W. Wu, X. Xu et al., “Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial,” Journal of the American Medical Association, vol. 307, no. 11, pp. 1169–1177, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Peng, M. Ke, L. Xu et al., “Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study,” Transplantation, vol. 95, pp. 161–168, 2013. View at Google Scholar
  11. M. E. Reinders, J. W. de Fijter, H. Roelofs et al., “Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study,” Stem Cells Translational Medicine, vol. 2, pp. 107–111, 2013. View at Google Scholar
  12. S. Nishikawa, M. Konno, A. Hamabe et al., “Aldehyde dehydrogenase high gastric cancer stem cells are resistant to chemotherapy,” International Journal of Oncology, vol. 42, pp. 1437–1442, 2013. View at Google Scholar
  13. K. H. Tang, Y. D. Dai, M. Tong et al., “A CD90(+) tumor-initiating cell population with an aggressive signature and metastatic capacity in esophageal cancer,” Cancer Research, vol. 73, pp. 2322–2332, 2013. View at Google Scholar
  14. C. K. Chan, P. Lindau, W. Jiang et al., “Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 31, pp. 12643–12648, 2013. View at Google Scholar
  15. M. A. González, E. Gonzalez-Rey, L. Rico, D. Büscher, and M. Delgado, “Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses,” Gastroenterology, vol. 136, no. 3, pp. 978–989, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Okita, M. Nakagawa, H. Hyenjong, T. Ichisaka, and S. Yamanaka, “Generation of mouse induced pluripotent stem cells without viral vectors,” Science, vol. 322, no. 5903, pp. 949–953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Miyoshi, H. Ishii, H. Nagano et al., “Reprogramming of mouse and human cells to pluripotency using mature microRNAs,” Cell Stem Cell, vol. 8, no. 6, pp. 633–638, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Anokye-Danso, C. M. Trivedi, D. Juhr et al., “Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency,” Cell Stem Cell, vol. 8, no. 4, pp. 376–388, 2011. View at Publisher · View at Google Scholar · View at Scopus