Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 35, Issue 6, Pages 711–720
http://dx.doi.org/10.1155/2013/478303
Review Article

Mast Cells as a Potential Prognostic Marker in Prostate Cancer

1Department of Urology, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
2Department of Pathology, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
3Department of Pathology, School of Medicine, University of Rijeka, Brace Branchetta Street No. 20, 51 000 Rijeka, Croatia
4Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy

Received 30 June 2013; Accepted 7 October 2013

Academic Editor: Maddalena Ruggieri

Copyright © 2013 Gianluigi Taverna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Grizzi, A. di Ieva, C. Russo et al., “Cancer initiation and progression: an unsimplifiable complexity,” Theoretical Biology and Medical Modelling, vol. 3, article 37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Grizzi and M. Chiriva-Internati, “Cancer: looking for simplicity and finding complexity,” Cancer Cell International, vol. 6, article 4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. S. Deisboeck, Z. Wang, P. MacKlin, and V. Cristini, “Multiscale cancer modeling,” Annual Review of Biomedical Engineering, vol. 13, pp. 127–155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Quaranta, K. A. Rejniak, P. Gerlee, and A. R. A. Anderson, “Invasion emerges from cancer cell adaptation to competitive microenvironments: quantitative predictions from multiscale mathematical models,” Seminars in Cancer Biology, vol. 18, no. 5, pp. 338–348, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Dean and H. Lou, “Genetics and genomics of prostate cancer,” Asian Journal of Andrology, vol. 15, pp. 309–313, 2013. View at Publisher · View at Google Scholar
  6. R. Siegel, C. DeSantis, K. Virgo et al., “Cancer treatment and survivorship statistics,” CA: A Cancer Journal For Clinicians, vol. 62, no. 4, pp. 220–241, 2012. View at Google Scholar
  7. M. F. Leitzmann and S. Rohrmann, “Risk factors for the onset of prostatic cancer: age, location, and behavioral correlates,” Clinical Epidemiology, vol. 4, no. 1, pp. 1–11, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. A. W. Wyatt, F. Mo, Y. Wang, and C. C. Collins, “The diverse heterogeneity of molecular alterations in prostate cancer identified through next-generation sequencing,” Asian Journal of Andrology, vol. 15, pp. 301–308, 2013. View at Publisher · View at Google Scholar
  9. M. J. Donovan and C. Cordon-Cardo, “Predicting high-risk disease using tissue biomarkers,” Current Opinion in Urology, vol. 23, no. 3, pp. 245–251, 2013. View at Google Scholar
  10. L. Cheng, G. T. MacLennan, A. Lopez-Beltran, and R. Montironi, “Anatomic, morphologic and genetic heterogeneity of prostate cancer: implications for clinical practice,” Expert Review of Anticancer Therapy, vol. 12, no. 11, pp. 1371–1374, 2012. View at Publisher · View at Google Scholar
  11. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Mantovani and M. A. Pierotti, “Cancer and inflammation: a complex relationship,” Cancer Letters, vol. 267, no. 2, pp. 180–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Mantovani, P. Romero, A. K. Palucka, and F. M. Marincola, “Tumour immunity: effector response to tumour and role of the microenvironment,” The Lancet, vol. 371, no. 9614, pp. 771–783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Angell and J. Galon, “From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer,” Current Opinion in Immunology, vol. 25, no. 2, pp. 261–267, 2013. View at Google Scholar
  15. W. H. Fridman, M. C. Dieu-Nosjean, F. Pages et al., “The immune microenvironment of human tumors: general significance and clinical impact,” Cancer Microenvironment, vol. 6, no. 2, pp. 117–122, 2013. View at Google Scholar
  16. W. H. Fridman, F. Pages, C. Sautes-Fridman, and J. Galon, “The immune contexture in human tumours: impact on clinical outcome,” Nature Reviews Cancer, vol. 12, no. 4, pp. 298–306, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Bonecchi, M. Locati, and A. Mantovani, “Chemokines and cancer: a fatal attraction,” Cancer Cell, vol. 19, no. 4, pp. 434–435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. del Prete, P. Allavena, G. Santoro, R. Fumarulo, M. M. Corsi, and A. Mantovani, “Molecular pathways in cancer-related inflammation,” Biochemia Medica, vol. 21, no. 3, pp. 264–275, 2011. View at Google Scholar · View at Scopus
  19. P. Allavena, G. Germano, F. Marchesi, and A. Mantovani, “Chemokines in cancer related inflammation,” Experimental Cell Research, vol. 317, no. 5, pp. 664–673, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Klink, L. L. Banez, L. Gerber, A. Lark, R. T. Vollmer, and S. J. Freedland, “Intratumoral inflammation is associated with more aggressive prostate cancer,” World Journal of Urology, 2013. View at Publisher · View at Google Scholar
  21. R. Kazma, J. A. Mefford, I. Cheng et al., “Association of the innate immunity and inflammation pathway with advanced prostate cancer risk,” PloS One, vol. 7, no. 12, Article ID e51680, 2012. View at Google Scholar
  22. T. Fujii, K. Shimada, O. Asai et al., “Immunohistochemical analysis of inflammatory cells in benign and precancerous lesions and carcinoma of the prostate,” Pathobiology, vol. 80, no. 3, pp. 119–126, 2013. View at Publisher · View at Google Scholar
  23. S. J. Galli and M. Tsai, “IgE and mast cells in allergic disease,” Nature Medicine, vol. 18, no. 5, pp. 693–704, 2012. View at Publisher · View at Google Scholar
  24. A. L. St John and S. N. Abraham, “Innate immunity and its regulation by mast cells,” Journal of Immunology, vol. 190, no. 9, pp. 4458–4463, 2013. View at Google Scholar
  25. D. Voehringer, “Protective and pathological roles of mast cells and basophils,” Nature Reviews Immunology, vol. 13, no. 5, pp. 362–375, 2013. View at Publisher · View at Google Scholar
  26. S. J. Galli, M. Grimbaldeston, and M. Tsai, “Immunomodulatory mast cells: negative, as well as positive, regulators of immunity,” Nature Reviews Immunology, vol. 8, no. 6, pp. 478–486, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. H. R. Rodewald and T. B. Feyerabend, “Widespread immunological functions of mast cells: fact or fiction?” Immunity, vol. 37, no. 1, pp. 13–24, 2012. View at Google Scholar
  28. R. J. Blair, H. Meng, M. J. Marchese et al., “Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor,” The Journal of Clinical Investigation, vol. 99, no. 11, pp. 2691–2700, 1997. View at Google Scholar · View at Scopus
  29. P. Pittoni and M. P. Colombo, “The dark side of mast cell-targeted therapy in prostate cancer,” Cancer Research, vol. 72, no. 4, pp. 831–835, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. N.-C. Diaconu, R. Kaminska, A. Naukkarinen, R. J. Harvima, and I. T. Harvima, “The increase in tryptase- and chymase-positive mast cells is associated with partial inactivation of chymase and increase in protease inhibitors in basal cell carcinoma,” Journal of the European Academy of Dermatology and Venereology, vol. 21, no. 7, pp. 908–915, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. L. M. Duncan, L. A. Richards, and M. C. Mihm Jr., “Increased mast cell density in invasive melanoma,” Journal of Cutaneous Pathology, vol. 25, no. 1, pp. 11–15, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Ribatti and E. Crivellato, “Mast cells, angiogenesis and cancer,” Advances in Experimental Medicine and Biology, vol. 716, pp. 270–288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Dyduch, K. Kaczmarczyk, and K. Okoń, “Mast cells and cancer: enemies or allies?” Polish Journal of Pathology, vol. 63, no. 1, pp. 1–7, 2012. View at Google Scholar · View at Scopus
  34. M. M. Shen and C. Abate-Shen, “Molecular genetics of prostate cancer: new prospects for old challenges,” Genes and Development, vol. 24, no. 18, pp. 1967–2000, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Li, E. Mercer, X. Gou, and Y. J. Lu, “Ethnical disparities of prostate cancer predisposition: genetic polymorphisms in androgen-related genes,” American Journal of Cancer Research, vol. 3, no. 2, pp. 127–151, 2013. View at Google Scholar
  36. X. Mao, Y. Yu, L. K. Boyd et al., “Distinct genomic alterations in prostate cancers in Chinese and Western populations suggest alternative pathways of prostate carcinogenesis,” Cancer Research, vol. 70, no. 13, pp. 5207–5212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Schultz, M. Meier, and H.-P. Schmid, “Nutrition, dietary supplements and adenocarcinoma of the prostate,” Maturitas, vol. 70, no. 4, pp. 339–342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Walia, Y. Sun, and H. R. Soule, “Global advances in prostate cancer diagnosis and therapy,” Asian Journal of Andrology, vol. 15, pp. 299–300, 2013. View at Google Scholar
  39. A. S. Glass, K. C. Cary, and M. R. Cooperberg, “Risk-based prostate cancer screening: who and how?” Current Urology Reports, vol. 14, no. 3, pp. 192–198, 2013. View at Google Scholar
  40. L. Klotz, “Cancer overdiagnosis and overtreatment,” Current Opinion in Urology, vol. 22, no. 3, pp. 203–209, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. “Management of localised prostate cancer: watchful waiting, surgery or radiation therapy, depending on the natural course, which is often relatively slow,” Prescrire International, vol. 21, no. 131, pp. 242–248, 2012.
  42. T. J. Wilt, M. K. Brawer, K. M. Jones et al., “Radical prostatectomy versus observation for localized prostate cancer,” The New England Journal of Medicine, vol. 367, no. 3, pp. 203–213, 2012. View at Publisher · View at Google Scholar
  43. L. Klotz, “Active surveillance: patient selection,” Current Opinion in Urology, vol. 23, no. 3, pp. 239–244, 2013. View at Google Scholar
  44. S. Roychowdhury and A. M. Chinnaiyan, “Advancing precision medicine for prostate cancer through genomics,” Journal of Clinical Oncology, vol. 31, no. 15, pp. 1866–1873, 2013. View at Publisher · View at Google Scholar
  45. J. Xu, J. Sun, and S. L. Zheng, “Prostate cancer risk-associated genetic markers and their potential clinical utility,” Asian Journal of Andrology, vol. 15, no. 3, pp. 314–322, 2013. View at Publisher · View at Google Scholar
  46. A. Elshafei, A. S. Moussa, A. Hatem et al., “Does positive family history of prostate cancer increase the risk of prostate cancer on initial prostate biopsy?” Urology, vol. 81, no. 4, pp. 826–830, 2013. View at Publisher · View at Google Scholar
  47. M. J. Alvarez-Cubero, M. Saiz, L. J. Martinez-Gonzalez, J. C. Alvarez, J. A. Lorente, and J. M. Cozar, “Genetic analysis of the principal genes related to prostate cancer: a review,” Urologic Oncology, 2012. View at Publisher · View at Google Scholar
  48. R. M. Hoffman, T. Koyama, K. H. Fan et al., “Mortality after radical prostatectomy or external beam radiotherapy for localized prostate cancer,” Journal of the National Cancer Institute, vol. 105, no. 10, pp. 711–718, 2013. View at Publisher · View at Google Scholar
  49. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics,” CA: A Cancer Journal For Clinicians, vol. 63, no. 1, pp. 11–30, 2013. View at Google Scholar
  50. S. Hussain, D. Gunnell, J. Donovan et al., “Secular trends in prostate cancer mortality, incidence and treatment: england and Wales, 1975-2004,” BJU International, vol. 101, no. 5, pp. 547–555, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Thalgott, B. Rack, T. Maurer et al., “Detection of circulating tumor cells in different stages of prostate cancer,” Journal of Cancer Research and Clinical Oncology, vol. 139, no. 5, pp. 755–763, 2013. View at Publisher · View at Google Scholar
  52. M. Riihimäki, H. Thomsen, A. Brandt, J. Sundquist, and K. Hemminki, “What do prostate cancer patients die of?” Oncologist, vol. 16, no. 2, pp. 175–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. M. J. Morris, K. A. Autio, E. M. Basch, D. C. Danila, S. Larson, and H. I. Scher, “Monitoring the clinical outcomes in advanced prostate cancer: what imaging modalities and other markers are reliable?” Seminars in Oncology, vol. 40, no. 3, pp. 375–392, 2013. View at Publisher · View at Google Scholar
  54. T. Bhavsar, P. McCue, and R. Birbe, “Molecular diagnosis of prostate cancer: are we up to age?” Seminars in Oncology, vol. 40, no. 3, pp. 259–275, 2013. View at Publisher · View at Google Scholar
  55. S. Josson, Y. Matsuoka, L. W. K. Chung, H. E. Zhau, and R. Wang, “Tumor-stroma co-evolution in prostate cancer progression and metastasis,” Seminars in Cell and Developmental Biology, vol. 21, no. 1, pp. 26–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Walia, K. J. Pienta, J. W. Simons, and H. R. Soule, “The 19th Annual Prostate Cancer Foundation scientific retreat: meeting report,” Cancer Research, vol. 73, pp. 4988–4991, 2013. View at Google Scholar
  57. Y.-N. Niu and S.-J. Xia, “Stroma-epithelium crosstalk in prostate cancer,” Asian Journal of Andrology, vol. 11, no. 1, pp. 28–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. R. A. Taylor and G. P. Risbridger, “Prostatic tumor stroma: a key player in cancer progression,” Current Cancer Drug Targets, vol. 8, no. 6, pp. 490–497, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Conti, M. L. Castellani, D. Kempuraj et al., “Review: role of mast cells in tumor growth,” Annals of Clinical and Laboratory Science, vol. 37, no. 4, pp. 315–322, 2007. View at Google Scholar · View at Scopus
  60. S. J. Galli, A. M. Dvorak, and H. F. Dvorak, “Basophils and mast cells: morphological insights into their biology, secretory patterns, and function,” Progress in Allergy, vol. 34, pp. 1–141, 1984. View at Google Scholar · View at Scopus
  61. F. Grizzi, G. di Caro, L. Laghi et al., “Mast cells and the liver aging process,” Immunity &Ageing, vol. 10, no. 1, p. 9, 2013. View at Google Scholar
  62. K. Maaninka, J. Lappalainen, and P. T. Kovanen, “Human mast cells arise from a common circulating progenitor,” The Journal of Allergy and Clinical Immunology, vol. 132, no. 2, pp. 463.e3–469.e3, 2013. View at Google Scholar
  63. Y. Shimizu, T. Suga, T. Maeno et al., “Detection of tryptase-, chymase+ cells in human CD34+ bone marrow progenitors,” Clinical and Experimental Allergy, vol. 34, no. 11, pp. 1719–1724, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. M. F. Gurish and K. F. Austen, “Developmental origin and functional specialization of mast cell subsets,” Immunity, vol. 37, no. 1, pp. 25–33, 2012. View at Google Scholar
  65. A.-M. A. Irani, T. R. Bradford, C. L. Kepley, N. M. Schechter, and L. B. Schwartz, “Detection of MC(T) and MC(TC) types of human mast cells by immunohistochemistry using new monoclonal anti-tryptase and anti-chymase antibodies,” The Journal of Histochemistry and Cytochemistry, vol. 37, no. 10, pp. 1509–1515, 1989. View at Google Scholar · View at Scopus
  66. N. M. Schechter, A.-M. A. Irani, J. L. Sprows, J. Abernethy, B. Wintroub, and L. B. Schwartz, “Identification of a cathepsin G-like proteinase in the MC(TC) type of human mast cell,” Journal of Immunology, vol. 145, no. 8, pp. 2652–2661, 1990. View at Google Scholar · View at Scopus
  67. N. Weidner and K. F. Austen, “Heterogeneity of mast cells at multiple body sites. Fluorescent determination of avidin binding and immunofluorescent determination of chymase, tryptase, and carboxypeptidase content,” Pathology Research and Practice, vol. 189, no. 2, pp. 156–162, 1993. View at Google Scholar · View at Scopus
  68. S. S. Craig and L. B. Schwartz, “Human MC(TC) type of mast cell granule: the uncommon occurrence of discrete scrolls associated with focal absence of chymase,” Laboratory Investigation, vol. 63, no. 4, pp. 581–585, 1990. View at Google Scholar · View at Scopus
  69. P. J. Bryce, C. B. Mathias, K. L. Harrison, T. Watanabe, R. S. Geha, and H. C. Oettgen, “The H1 histamine receptor regulates allergic lung responses,” The Journal of Clinical Investigation, vol. 116, no. 6, pp. 1624–1632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. M. V. White, “The role of histamine in allergic diseases,” The Journal of Allergy and Clinical Immunology, vol. 86, no. 4, part 2, pp. 599–605, 1990. View at Publisher · View at Google Scholar · View at Scopus
  71. J.-C. Schwartz, “The histamine H3 receptor: from discovery to clinical trials with pitolisant,” British Journal of Pharmacology, vol. 163, no. 4, pp. 713–721, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. E. Stoyanov, M. Uddin, D. Mankuta, S. M. Dubinett, and F. Levi-Schaffer, “Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells,” Lung Cancer, vol. 75, no. 1, pp. 38–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Ramos-Jiménez, L.-E. Soria-Jasso, A. López-Colombo, J.-A. Reyes-Esparza, J. Camacho, and J.-A. Arias-Montaño, “Histamine augments β2-adrenoceptor-induced cyclic AMP accumulation in human prostate cancer cells DU-145 independently of known histamine receptors,” Biochemical Pharmacology, vol. 73, no. 6, pp. 814–823, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. J. R. Gordon and S. J. Galli, “Mast cells as a source of both preformed and immunologically inducible TNF-α/cachectin,” Nature, vol. 346, no. 6281, pp. 274–276, 1990. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Sandig and S. Bulfone-Paus, “TLR signaling in mast cells: common and unique features,” Frontiers in Immunology, vol. 3, p. 185, 2012. View at Google Scholar
  76. L. H. Sigal, “Basic science for the clinician 53: mast cells,” Journal of Clinical Rheumatology, vol. 17, no. 7, pp. 395–400, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. A. W. Hauswirth, L. Escribano, A. Prados et al., “CD203c is overexpressed on neoplastic mast cells in systemic mastocytosis and is upregulated upon IgE receptor cross-linking,” International Journal of Immunopathology and Pharmacology, vol. 21, no. 4, pp. 797–806, 2008. View at Google Scholar · View at Scopus
  78. P. Valent, S. Cerny-Reiterer, H. Herrmann et al., “Phenotypic heterogeneity, novel diagnostic markers, and target expression profiles in normal and neoplastic human mast cells,” Best Practice and Research, vol. 23, no. 3, pp. 369–378, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Blatt, H. Herrmann, I. Mirkina et al., “The PI3-kinase/mTOR-targeting drug NVP-BEZ235 inhibits growth and IgE-dependent activation of human mast cells and basophils,” PLoS One, vol. 7, no. 1, Article ID e29925, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. D. M. Anderson, S. D. Lyman, A. Baird et al., “Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms,” Cell, vol. 63, no. 1, pp. 235–243, 1990. View at Publisher · View at Google Scholar · View at Scopus
  81. J. A. Boyce, “Mast cells: beyond IgE,” The Journal of Allergy and Clinical Immunology, vol. 111, no. 1, pp. 24–33, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. M. F. Gurish and J. A. Boyce, “Mast cells: ontogeny, homing, and recruitment of a unique innate effector cell,” The Journal of Allergy and Clinical Immunology, vol. 117, no. 6, pp. 1285–1291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. J. A. Boyce, “The biology of the mast cell,” Allergy and Asthma Proceedings, vol. 25, no. 1, pp. 27–30, 2004. View at Google Scholar · View at Scopus
  84. B. Frossi, M. de Carli, and C. Pucillo, “The mast cell: an antenna of the microenvironment that directs the immune response,” Journal of Leukocyte Biology, vol. 75, no. 4, pp. 579–585, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Suurmond, J. van Heemst, J. van Heiningen et al., “Communication between human mast cells and CD4+ T cells through antigen-dependent interactions,” European Journal of Immunology, vol. 43, no. 7, pp. 1758–1768, 2013. View at Google Scholar
  86. S. Tete, D. Tripodi, M. Rosati et al., “Role of mast cells in innate and adaptive immunity,” Journal of Biological Regulators and Homeostatic Agents, vol. 26, no. 2, pp. 193–201, 2012. View at Google Scholar
  87. S. J. Galli, S. Nakae, and M. Tsai, “Mast cells in the development of adaptive immune responses,” Nature Immunology, vol. 6, no. 2, pp. 135–142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. H. J. Bax, A. H. Keeble, and H. J. Gould, “Cytokinergic IgE action in mast cell activation,” Frontiers in Immunology, vol. 3, p. 229, 2012. View at Google Scholar
  89. T. Kawakami, J. Kitaura, W. Xiao, and Y. Kawakami, “IgE regulation of mast cell survival and function,” Novartis Foundation Symposium, vol. 271, pp. 100–151, 2005. View at Google Scholar · View at Scopus
  90. D. W. MacGlashan Jr., “IgE-dependent signaling as a therapeutic target for allergies,” Trends in Pharmacological Sciences, vol. 33, no. 9, pp. 502–509, 2012. View at Google Scholar
  91. F. Grizzi, B. Franceschini, B. Barbieri et al., “Mast cell density: a quantitative index of acute liver inflammation,” Analytical and Quantitative Cytology and Histology, vol. 24, no. 2, pp. 63–69, 2002. View at Google Scholar · View at Scopus
  92. F. Grizzi, B. Franceschini, N. Gagliano et al., “Mast cell density, hepatic stellate cell activation and TGF-β1 transcripts in the aging Sprague-Dawley rat during early acute liver injury,” Toxicologic Pathology, vol. 31, no. 2, pp. 173–178, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. B. Franceschini, G. Ceva-Grimaldi, C. Russo, N. Dioguardi, and F. Grizzi, “The complex functions of mast cells in chronic human liver diseases,” Digestive Diseases and Sciences, vol. 51, no. 12, pp. 2248–2256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. H. Lee, J. Kashiwakura, A. Matsuda et al., “Activation of human synovial mast cells from rheumatoid arthritis or osteoarthritis patients in response to aggregated IgG through Fcgamma receptor I and Fcgamma receptor II,” Arthritis and Rheumatism, vol. 65, no. 1, pp. 109–119, 2013. View at Google Scholar
  95. I. Bot and E. A. L. Biessen, “Mast cells in atherosclerosis,” Thrombosis and Haemostasis, vol. 106, no. 5, pp. 820–826, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. F. Levi-Schaffer, V. Segal, V. Barak, E. Rubinchik, and A. Nagler, “Regulation of the functional activity of mast cells and fibroblasts by mononuclear cells in murine and human chronic graft-versus-host disease,” Experimental Hematology, vol. 25, no. 3, pp. 238–245, 1997. View at Google Scholar · View at Scopus
  97. S. P. Levick, G. C. Melndez, E. Plante, J. L. McLarty, G. L. Brower, and J. S. Janicki, “Cardiac mast cells: the centrepiece in adverse myocardial remodelling,” Cardiovascular Research, vol. 89, no. 1, pp. 12–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. M. K. Church and F. Levi-Schaffer, “The human mast cell,” The Journal of Allergy and Clinical Immunology, vol. 99, no. 2, pp. 155–160, 1997. View at Publisher · View at Google Scholar · View at Scopus
  99. A. M. Gilfillan and M. A. Beaven, “Regulation of mast cell responses in health and disease,” Critical Reviews in Immunology, vol. 31, no. 6, pp. 475–529, 2011. View at Google Scholar · View at Scopus
  100. C. L. Weller, S. J. Collington, T. Williams, and J. R. Lamb, “Mast cells in health and disease,” Clinical Science, vol. 120, no. 11, pp. 473–484, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. K. N. Rao and M. A. Brown, “Mast cells: multifaceted immune cells with diverse roles in health and disease,” Annals of the New York Academy of Sciences, vol. 1143, pp. 83–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. I. Bachelet, F. Levi-Schaffer, and Y. A. Mekori, “Mast Cells: not only in allergy,” Immunology and Allergy Clinics of North America, vol. 26, no. 3, pp. 407–425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. D. A. Barron and D. R. Rowley, “The reactive stroma microenvironment and prostate cancer progression,” Endocrine-Related Cancer, vol. 19, no. 6, pp. R187–R204, 2012. View at Google Scholar
  104. J. A. Tuxhorn, G. E. Ayala, and D. R. Rowley, “Reactive stroma in prostate cancer progression,” The Journal of Urology, vol. 166, no. 6, pp. 2472–2483, 2001. View at Google Scholar · View at Scopus
  105. D. Ribatti and E. Crivellato, “Mast cells, angiogenesis, and tumour growth,” Biochimica et Biophysica Acta, vol. 1822, no. 1, pp. 2–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  106. K. Khazaie, N. R. Blatner, M. W. Khan et al., “The significant role of mast cells in cancer,” Cancer and Metastasis Reviews, vol. 30, no. 1, pp. 45–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Mimeault and S. K. Batra, “Development of animal models underlining mechanistic connections between prostate inflammation and cancer,” World Journal of Clinical Oncology, vol. 4, no. 1, pp. 4–13, 2013. View at Publisher · View at Google Scholar
  108. H. Nechushtan, “The complexity of the complicity of mast cells in cancer,” The International Journal of Biochemistry and Cell Biology, vol. 42, no. 5, pp. 551–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. S. Maltby, K. Khazaie, and K. M. McNagny, “Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation,” Biochimica et Biophysica Acta, vol. 1796, no. 1, pp. 19–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. S. Ch'ng, R. A. Wallis, L. Yuan, P. F. Davis, and S. T. Tan, “Mast cells and cutaneous malignancies,” Modern Pathology, vol. 19, no. 1, pp. 149–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Raica, A. M. Cimpean, R. Ceausu, D. Ribatti, and P. Gaje :, “Interplay between mast cells and lymphatic vessels in different molecular types of breast cancer,” Anticancer Research, vol. 33, no. 3, pp. 957–963, 2013. View at Google Scholar
  112. L. Jiang, Y. Hua, Q. Shen et al., “Role of mast cells in gynecological neoplasms,” Frontiers in Bioscience, vol. 18, pp. 773–781, 2013. View at Google Scholar
  113. T. Tanaka and H. Ishikawa, “Mast cells and inflammation-associated colorectal carcinogenesis,” Seminars in Immunopathology, vol. 35, no. 2, pp. 245–254, 2013. View at Publisher · View at Google Scholar
  114. X. Wu, Y. Zou, X. He et al., “Tumor-infiltrating mast cells in colorectal cancer as a poor prognostic factor,” International Journal of Surgical Pathology, vol. 21, no. 2, pp. 111–120, 2013. View at Google Scholar
  115. I. Zlobec, P. Minoo, L. Terracciano, K. Baker, and A. Lugli, “Characterization of the immunological microenvironment of tumour buds and its impact on prognosis in mismatch repair-proficient and -deficient colorectal cancers,” Histopathology, vol. 59, no. 3, pp. 482–495, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. A. Johansson, S. Rudolfsson, P. Hammarsten et al., “Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy,” The American Journal of Pathology, vol. 177, no. 2, pp. 1031–1041, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. N. Nonomura, H. Takayama, K. Nishimura et al., “Decreased number of mast cells infiltrating into needle biopsy specimens leads to a better prognosis of prostate cancer,” British Journal of Cancer, vol. 97, no. 7, pp. 952–956, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Fleischmann, T. Schlomm, J. Köllermann et al., “Immunological microenvironment in prostate cancer: high mast cell densities are associated with favorable tumor characteristics and good prognosis,” The Prostate, vol. 69, no. 9, pp. 976–981, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. A. Sari, T. A. Serel, Ö. Çandir, A. Öztürk, and A. Kosar, “Mast cell variations in tumour tissue and with histopathological grading in specimens of prostatic adenocarcinoma,” BJU International, vol. 84, no. 7, pp. 851–853, 1999. View at Publisher · View at Google Scholar · View at Scopus
  120. R. K. Gupta, “Mast cell variations in prostate and urinary bladder,” Archives of Pathology, vol. 89, no. 4, pp. 302–305, 1970. View at Google Scholar · View at Scopus
  121. M. Dabbous, R. Walker, L. Haney, L. M. Carter, G. L. Nicolson, and D. E. Woolley, “Mast cells and matrix degradation at sites of tumour invasion in rat mammary adenocarcinoma,” British Journal of Cancer, vol. 54, no. 3, pp. 459–465, 1986. View at Google Scholar · View at Scopus
  122. H. Yuan, Y. H. Hsiao, Y. Zhang et al., “Destructive impact of t-lymphocytes, NK and mast cells on basal cell layers: implications for tumor invasion,” BMC Cancer, vol. 13, no. 1, p. 258, 2013. View at Google Scholar
  123. O. Aydin, D. Dusmez, L. Cinel, E. Doruk, and A. Kanik, “Immunohistological analysis of mast cell numbers in the intratumoral and peritumoral regions of prostate carcinoma compared to benign prostatic hyperplasia,” Pathology Research and Practice, vol. 198, no. 4, pp. 267–271, 2002. View at Google Scholar · View at Scopus
  124. V. Dimitriadou and M. Koutsilieris, “Mast cell-tumor cell interactions: for or against tumour growth and metastasis?” Anticancer Research, vol. 17, no. 3, pp. 1541–1549, 1997. View at Google Scholar · View at Scopus
  125. S. J. Ellem, H. Wang, M. Poutanen, and G. P. Risbridger, “Increased endogenous estrogen synthesis leads to the sequential induction of prostatic inflammation (prostatitis) and prostatic pre-malignancy,” The American Journal of Pathology, vol. 175, no. 3, pp. 1187–1199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. S. Papadoukakis, A. Kyroudi-Voulgari, M. C. Truss, D. Perea, and D. Mitropoulos, “Quantitative study of mast cells in experimentally induced benign prostatic hyperplasia,” Urologia Internationalis, vol. 84, no. 1, pp. 100–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. P. Pittoni, C. Tripodo, S. Piconese et al., “Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers,” Cancer Research, vol. 71, no. 18, pp. 5987–5997, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. T. C. Theoharides and P. Conti, “Mast cells: the JEKYLL and HYDE of tumor growth,” Trends in Immunology, vol. 25, no. 5, pp. 235–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. E. Crivellato, B. Nico, and D. Ribatti, “Mast cell contribution to tumor angiogenesis: a clinical approach,” European Cytokine Network, vol. 20, no. 4, pp. 197–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. D. Utrera-Barillas, M. Castro-Manrreza, E. Castellanos et al., “The role of macrophages and mast cells in lymphangiogenesis and angiogenesis in cervical carcinogenesis,” Experimental and Molecular Pathology, vol. 89, no. 2, pp. 190–196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. Y. Ma, R. F. Hwang, C. D. Logsdon, and S. E. Ullrich, “Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer,” Cancer Research, vol. 73, no. 13, pp. 3927–3937, 2013. View at Google Scholar
  132. S. J. Mandrekar and D. J. Sargent, “Design of clinical trials for biomarker research in oncology,” Clinical Investigation, vol. 1, no. 12, pp. 1629–1636, 2011. View at Google Scholar
  133. B. George and S. Kopetz, “Predictive and prognostic markers in colorectal cancer,” Current Oncology Reports, vol. 13, no. 3, pp. 206–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  134. M. de Wit, R. J. Fijneman, H. M. Verheul, G. A. Meijer, and C. R. Jimenez, “Proteomics in colorectal cancer translational research: biomarker discovery for clinical applications,” Clinical Biochemistry, vol. 46, no. 6, pp. 466–479, 2013. View at Google Scholar
  135. Y. Peng, X. Li, M. Wu et al., “New prognosis biomarkers identified by dynamic proteomic analysis of colorectal cancer,” Molecular BioSystems, vol. 8, no. 11, pp. 3077–3088, 2012. View at Google Scholar
  136. S. Mathivanan, H. Ji, B. J. Tauro, Y. S. Chen, and R. J. Simpson, “Identifying mutated proteins secreted by colon cancer cell lines using mass spectrometry,” vol. 76, pp. 141–149, 2012. View at Google Scholar
  137. J. Galon, F. Pages, F. M. Marincola et al., “Cancer classification using the Immunoscore: a worldwide task force,” Journal of Translational Medicine, vol. 10, p. 205, 2012. View at Google Scholar
  138. R. Simon and S. Roychowdhury, “Implementing personalized cancer genomics in clinical trials,” Nature Reviews in Drugs Discovery, vol. 12, no. 5, pp. 358–369, 2013. View at Publisher · View at Google Scholar
  139. A. D. Choudhury, R. Eeles, S. J. Freedland et al., “The role of genetic markers in the management of prostate cancer,” European Urology, vol. 62, no. 4, pp. 577–587, 2012. View at Google Scholar