Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 2014, Article ID 351863, 10 pages
http://dx.doi.org/10.1155/2014/351863
Research Article

Promoter Methylation of SFRP3 Is Frequent in Hepatocellular Carcinoma

1Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
2Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
3Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
4Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
5Division of General Surgery, Department of Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan

Received 30 June 2013; Revised 1 October 2013; Accepted 22 October 2013; Published 21 January 2014

Academic Editor: Valeria Barresi

Copyright © 2014 Ya-Wen Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. X. Bosch, J. Ribes, R. Cléries, and M. Díaz, “Epidemiology of hepatocellular carcinoma,” Clinics in Liver Disease, vol. 9, no. 2, pp. 191–211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. F. X. Bosch, J. Ribes, and J. Borràs, “Epidemiology of primary liver cancer,” Seminars in Liver Disease, vol. 19, no. 3, pp. 271–285, 1999. View at Google Scholar · View at Scopus
  3. A. S. Befeler and A. M. Di Bisceglie, “Hepatocellular carcinoma: diagnosis and treatment,” Gastroenterology, vol. 122, no. 6, pp. 1609–1619, 2002. View at Google Scholar · View at Scopus
  4. H. B. El-Serag, “Hepatocellular carcinoma: recent trends in the United States,” Gastroenterology, vol. 127, pp. S27–S34, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. H. B. El-Serag and A. C. Mason, “Rising incidence of hepatocellular carcinoma in the United States,” The New England Journal of Medicine, vol. 340, no. 10, pp. 745–750, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. M. D. Thompson and S. P. S. Monga, “WNT/β-catenin signaling in liver health and disease,” Hepatology, vol. 45, no. 5, pp. 1298–1305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Chiba, Y.-W. Zheng, K. Kita et al., “Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation,” Gastroenterology, vol. 133, no. 3, pp. 937–950, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Zeng, U. Apte, B. Cieply, S. Singh, and S. P. S. Monga, “siRNA-mediated β-catenin knockdown in human hepatoma cells results in decreased growth and survival,” Neoplasia, vol. 9, no. 11, pp. 951–959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Behari, “The Wnt/β-catenin signaling pathway in liver biology and disease,” Expert Review of Gastroenterology and Hepatology, vol. 4, no. 6, pp. 745–756, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. K. M. Cadigan and R. Nusse, “Wnt signaling: a common theme in animal development,” Genes and Development, vol. 11, no. 24, pp. 3286–3305, 1997. View at Google Scholar · View at Scopus
  11. C. Y. Logan, J. R. Miller, M. J. Ferkowicz, and D. R. McClay, “Nuclear β-catenin is required to specify vegetal cell fates in the sea urchin embryo,” Development, vol. 126, no. 2, pp. 345–357, 1999. View at Google Scholar · View at Scopus
  12. P. Polakis, “Wnt signaling and cancer,” Genes and Development, vol. 14, no. 15, pp. 1837–1851, 2000. View at Google Scholar · View at Scopus
  13. C. Yost, M. Torres, J. R. Miller, E. Huang, D. Kimelman, and R. T. Moon, “The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3,” Genes and Development, vol. 10, no. 12, pp. 1443–1454, 1996. View at Google Scholar · View at Scopus
  14. J. Behrens, J. P. von Kries, M. Kühl et al., “Functional interaction of β-catenin with the transcription factor LEF- 1,” Nature, vol. 382, no. 6592, pp. 638–642, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Cui, X. Zhou, Y. Liu, Z. Tang, and M. Romeih, “Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes,” Journal of Gastroenterology and Hepatology, vol. 18, no. 3, pp. 280–287, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. de La Coste, B. Romagnolo, P. Billuart et al., “Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 15, pp. 8847–8851, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. P. A. Farazi and R. A. DePinho, “Hepatocellular carcinoma pathogenesis: from genes to environment,” Nature Reviews Cancer, vol. 6, no. 9, pp. 674–687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Y.-L. Shih, R.-Y. Shyu, C.-B. Hsieh et al., “Promoter methylation of the secreted frizzled-related protein 1 gene SFRP1 is frequent in hepatocellular carcinoma,” Cancer, vol. 107, no. 3, pp. 579–590, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. G. M. Caldwell, C. Jones, K. Gensberg et al., “The Wnt antagonist sFRP1 in colorectal tumorigenesis,” Cancer Research, vol. 64, no. 3, pp. 883–888, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Sarrió, G. Moreno-Bueno, D. Hardisson et al., “Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability,” International Journal of Cancer, vol. 106, no. 2, pp. 208–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Satoh, Y. Daigo, Y. Furukawa et al., “AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1,” Nature Genetics, vol. 24, no. 3, pp. 245–250, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Suzuki, E. Gabrielson, W. Chen et al., “A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer,” Nature Genetics, vol. 31, no. 2, pp. 141–149, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. J. G. Herman and S. B. Baylin, “Gene silencing in cancer in association with promoter hypermethylation,” The New England Journal of Medicine, vol. 349, no. 21, pp. 2042–2054, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. J. G. Herman, A. Merlo, L. Mao et al., “Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers,” Cancer Research, vol. 55, no. 20, pp. 4525–4530, 1995. View at Google Scholar · View at Scopus
  25. M. Esteller, A. Sparks, M. Toyota et al., “Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer,” Cancer Research, vol. 60, no. 16, pp. 4366–4371, 2000. View at Google Scholar · View at Scopus
  26. J. Yu, H. Y. Zhang, Z. Z. Ma, W. Lu, Y. F. Wang, and J. D. Zhu, “Methylation profiling of twenty four genes and the concordant methylation behaviours of nineteen genes that may contribute to hepatocellular carcinogenesis,” Cell Research, vol. 13, no. 5, pp. 319–333, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Yang, M. Guo, J. G. Herman, and D. P. Clark, “Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma,” American Journal of Pathology, vol. 163, no. 3, pp. 1101–1107, 2003. View at Google Scholar · View at Scopus
  28. U. Schagdarsurengin, L. Wilkens, D. Steinemann et al., “Frequent epigenetic inactivation of the RASSF1A gene in hepatocellular carcinoma,” Oncogene, vol. 22, no. 12, pp. 1866–1871, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Suzuki, D. N. Watkins, K.-W. Jair et al., “Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer,” Nature Genetics, vol. 36, no. 4, pp. 417–422, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. P. W. Finch, X. He, M. J. Kelley et al., “Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, pp. 6770–6775, 1997. View at Google Scholar
  31. E. J. Ekström, V. Sherwood, and T. Andersson, “Methylation and loss of secreted frizzled-related protein 3 enhances melanoma cell migration and invasion,” PLoS ONE, vol. 6, no. 4, Article ID e18674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Zi, Y. Guo, A. R. Simoneau et al., “Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness,” Cancer Research, vol. 65, no. 21, pp. 9762–9770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Hirata, Y. Hinoda, K. Ueno, S. Majid, S. Saini, and R. Dahiya, “Role of secreted frizzled-related protein 3 in human renal cell carcinoma,” Cancer Research, vol. 70, no. 5, pp. 1896–1905, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. Y.-L. Shih, C.-B. Hsieh, H.-C. Lai et al., “SFRP1 suppressed hepatoma cells growth through Wnt canonical signaling pathway,” International Journal of Cancer, vol. 121, no. 5, pp. 1028–1035, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. G. Herman, J. R. Graff, S. Myöhänen, B. D. Nelkin, and S. B. Baylin, “Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 18, pp. 9821–9826, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Ogino, T. Kawasaki, M. Brahmandam et al., “Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis,” Journal of Molecular Diagnostics, vol. 8, no. 2, pp. 209–217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. H.-C. Lai, Y.-W. Lin, R.-L. Huang et al., “Quantitative DNA methylation analysis detects cervical intraepithelial neoplasms type 3 and worse,” Cancer, vol. 116, no. 18, pp. 4266–4274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. W. B. Coleman and A. G. Rivenbark, “Quantitative DNA methylation analysis: the promise of high-throughput epigenomic diagnostic testing in human neoplastic disease,” Journal of Molecular Diagnostics, vol. 8, no. 2, pp. 152–156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Kondo, Y. Kanai, M. Sakamoto, M. Mizokami, R. Ueda, and S. Hirohashi, “Genetic instability and aberrant DNA methylation in chronic hepatitis and cirrhosis—a comprehensive study of loss of heterozygosity and microsatellite instability at 39 loci and DNA hypermethylation on 8 CpG islands in microdissected specimens from patients with hepatocellular carcinoma,” Hepatology, vol. 32, no. 5, pp. 970–979, 2000. View at Google Scholar · View at Scopus