Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 2014, Article ID 594093, 8 pages
http://dx.doi.org/10.1155/2014/594093
Research Article

Identification of Human Tissue Kallikrein 6 as a Potential Marker of Laryngeal Cancer Based on the Relevant Secretory/Releasing Protein Database

1Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
2State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Cancer Institute (Hospital), Peking Union Medical College & Chinese Academy of Medical Sciences, P.O. Box 2258, Beijing 100021, China
3Department of Head and Neck Surgical Oncology, Cancer Institute (Hospital), Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
4National Center of Biomedical Analysis, Beijing 100021, China

Received 14 November 2013; Revised 3 January 2014; Accepted 4 January 2014; Published 11 February 2014

Academic Editor: Olav Lapaire

Copyright © 2014 Ying Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Argiris, M. V. Karamouzis, D. Raben, and R. L. Ferris, “Head and neck cancer,” The Lancet, vol. 371, no. 9625, pp. 1695–1709, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. Cancer Incidence and Mortality from 30 Cancer Registries in China, pp. 284–289, People's Medical Publishing House, 2007.
  4. D. A. Sewell, C. Yuan, and E. Robertson, “Proteomic signatures in laryngeal squamous cell carcinoma,” Journal for Oto-Rhino-Laryngology and Its Related Specialties, vol. 69, no. 2, pp. 77–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Roesch-Ely, M. Nees, S. Karsai et al., “Proteomic analysis reveals successive aberrations in protein expression from healthy mucosa to invasive head and neck cancer,” Oncogene, vol. 26, no. 1, pp. 54–64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Ralhan, L. V. DeSouza, A. Matta et al., “Discovery and verification of head-and-neck cancer biomarkers by differential protein expression analysis using iTRAQ labeling, multidimensional liquid chromatography, and tandem mass spectrometry,” Molecular and Cellular Proteomics, vol. 7, no. 6, pp. 1162–1173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Zhang, X. Song, X. Liu et al., “Preliminary proteomic analysis of human serum from patients with laryngeal carcinoma,” European Archives of Oto-Rhino-Laryngology, vol. 269, no. 2, pp. 557–563, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. C. P. C. Gomes, M. S. Freire, B. R. B. Pires et al., “Comparative proteomical and metalloproteomical analyses of human plasma from patients with laryngeal cancer,” Cancer Immunology, Immunotherapy, vol. 59, no. 1, pp. 173–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Jarai, G. Maasz, A. Burian et al., “Mass spectrometry-based salivary proteomics for the discovery of head and neck squamous cell carcinoma,” Pathology and Oncology Research, vol. 18, pp. 623–628, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. L. H. Pereira, I. N. Adebisi, A. Perez et al., “Salivary markers and risk factor data: a multivariate modeling approach for head and neck squamous cell carcinoma detection,” Cancer Biomarkers, vol. 10, pp. 241–249, 2011. View at Google Scholar
  11. L. Sepiashvili, A. Hui, V. Ignatchenko et al., “Potentially novel candidate biomarkers for head and neck squamous cell carcinoma identified using an integrated cell line-based discovery strategy,” Molecular and Cellular Proteomics, vol. 11, pp. 1404–1415, 2012. View at Google Scholar
  12. R. Ralhan, O. Masui, L. V. Desouza, A. Matta, M. Macha, and K. W. M. Siu, “Identification of proteins secreted by head and neck cancer cell lines using LC-MS/MS: strategy for discovery of candidate serological biomarkers,” Proteomics, vol. 11, no. 12, pp. 2363–2376, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Xiao, W. Ying, L. Li et al., “An approach to studying lung cancer-related proteins in human blood,” Molecular and Cellular Proteomics, vol. 4, no. 10, pp. 1480–1486, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Zhang, B. Xu, Y. Liu et al., “The ovarian cancer-derived secretory/releasing proteome: a repertoire of tumor markers,” Proteomics, vol. 12, pp. 1883–1891, 2012. View at Google Scholar
  15. A. Shevchenko, H. Tomas, J. Havliš, J. V. Olsen, and M. Mann, “In-gel digestion for mass spectrometric characterization of proteins and proteomes,” Nature Protocols, vol. 1, no. 6, pp. 2856–2860, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Maere, K. Heymans, and M. Kuiper, “BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks,” Bioinformatics, vol. 21, no. 16, pp. 3448–3449, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. G. S. Omenn, D. J. States, M. Adamski et al., “Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database,” Proteomics, vol. 5, no. 13, pp. 3226–3245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. N. L. Anderson, M. Polanski, R. Pieper et al., “The human plasma proteome: a nonredundant list developed by combination of four separate sources,” Molecular and Cellular Proteomics, vol. 3, pp. 311–326, 2004. View at Google Scholar
  19. K. Lee, H. Lee, and C. Jeon, “Body fluid biomarkers for early detection of head and neck squamous cell carcinomas,” Anticancer Research, vol. 31, no. 4, pp. 1161–1167, 2011. View at Google Scholar · View at Scopus
  20. T. B. M. Schaaij-Visser, R. H. Brakenhoff, C. R. Leemans, A. J. R. Heck, and M. Slijper, “Protein biomarker discovery for head and neck cancer,” Journal of Proteomics, vol. 73, no. 10, pp. 1790–1803, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. T. M. B. Rezende, M. D. S. Freire, and O. L. Franco, “Head and neck cancer,” Cancer, vol. 116, no. 21, pp. 4914–4925, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. R. Stratton, P. J. Campbell, and P. A. Futreal, “The cancer genome,” Nature, vol. 458, no. 7239, pp. 719–724, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Polyak, I. Haviv, and I. G. Campbell, “Co-evolution of tumor cells and their microenvironment,” Trends in Genetics, vol. 25, no. 1, pp. 30–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. K. J. Aitken and D. J. Bägli, “The bladder extracellular matrix, part I: architecture, development and disease,” Nature Reviews Urology, vol. 6, no. 11, pp. 596–611, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. N. C. Denko, “Hypoxia, HIF1 and glucose metabolism in the solid tumour,” Nature Reviews Cancer, vol. 8, no. 9, pp. 705–713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. A. Gatenby and R. J. Gillies, “Why do cancers have high aerobic glycolysis?” Nature Reviews Cancer, vol. 4, no. 11, pp. 891–899, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. G. M. Yousef, C. V. Obiezu, L. Luo et al., “Human tissue kallikreins: from gene structure to function and clinical applications,” Advances in Clinical Chemistry, vol. 39, pp. 11–79, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. S. P. Little, E. P. Dixon, F. Norris et al., “Zyme, a novel and potentially amyloidogenic enzyme cDNA isolated from Alzheimer's disease brain,” The Journal of Biological Chemistry, vol. 272, no. 40, pp. 25135–25142, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Anisowicz, G. Sotiropoulou, G. Stenman, S. C. Mok, and R. Sager, “A novel protease homolog differentially expressed in breast and ovarian cancer,” Molecular Medicine, vol. 2, no. 5, pp. 624–636, 1996. View at Google Scholar · View at Scopus
  31. K. Yamashiro, N. Tsuruoka, S. Kodama et al., “Molecular cloning of a novel trypsin-like serine protease (neurosin) preferentially expressed in brain,” Biochimica et Biophysica Acta, vol. 1350, no. 1, pp. 11–14, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Seiz, J. Dorn, M. Kotzsch et al., “Stromal cell-associated expression of kallikrein-related peptidase 6 (KLK6) indicates poor prognosis of ovarian cancer patients,” Biological Chemistry, vol. 393, no. 5, pp. 391–401, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Pépin, Z. Shao, G. Huppé et al., “Kallikreins 5, 6 and 10 differentially alter pathophysiology and overall survival in an ovarian cancer xenograft model,” PloS ONE, vol. 6, no. 11, Article ID e26075, 2011. View at Google Scholar · View at Scopus
  34. S. C. L. Koh, K. Razvi, Y. H. Chan et al., “The association with age, human tissue kallikreins 6 and 10 and hemostatic markers for survival outcome from epithelial ovarian cancer,” Archives of Gynecology and Obstetrics, vol. 284, no. 1, pp. 183–190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. M. A. El Sherbini, M. M. Sallam, E. A. K. Shaban, and A. H. El-Shalakany, “Diagnostic value of serum kallikrein-related peptidases 6 and 10 versus CA125 in ovarian cancer,” International Journal of Gynecological Cancer, vol. 21, no. 4, pp. 625–632, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. N. M. A. White, M. Mathews, G. M. Yousef, A. Prizada, C. Popadiuk, and J. J. E. Doré, “KLK6 and KLK13 predict tumor recurrence in epithelial ovarian carcinoma,” British Journal of Cancer, vol. 101, no. 7, pp. 1107–1113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Petraki, W. Dubinski, A. Scorilas et al., “Evaluation and prognostic significance of human tissue kallikrein-related peptidase 6 (KLK6) in colorectal cancer,” Pathology Research and Practice, vol. 208, no. 2, pp. 104–108, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Kim, E. Y. Song, K. Chung et al., “Up-regulation and clinical significance of serine protease kallikrein 6 in colon cancer,” Cancer, vol. 117, no. 12, pp. 2608–2619, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. J. J. Kim, J. Kim, H. R. Yoon et al., “Upregulation and secretion of kallikrein-related peptidase 6 (KLK6) in gastric cancer,” Tumor Biology, vol. 33, pp. 731–738, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Nagahara, K. Mimori, T. Utsunomiya et al., “Clinicopathologic and biological significance of Kallikrein 6 overexpression in human gastric cancer,” Clinical Cancer Research, vol. 11, no. 19 I, pp. 6800–6806, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. D. Santin, E. P. Diamandis, S. Bellone et al., “Human kallikrein 6: a new potential serum biomarker for uterine serous papillary cancer,” Clinical Cancer Research, vol. 11, no. 9, pp. 3320–3325, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Nathalie, P. Chris, G. Serge et al., “High kallikrein-related peptidase 6 in non-small cell lung cancer cells: an indicator of tumour proliferation and poor prognosis,” Journal of Cellular and Molecular Medicine, vol. 13, no. 9, pp. 4014–4022, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Rückert, M. Hennig, C. D. Petraki et al., “Co-expression of KLK6 and KLK10 as prognostic factors for survival in pancreatic ductal adenocarcinoma,” British Journal of Cancer, vol. 99, no. 9, pp. 1484–1492, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. J. L. V. Shaw and E. P. Diamandis, “Distribution of 15 human kallikreins in tissues and biological fluids,” Clinical Chemistry, vol. 53, no. 8, pp. 1423–1432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. C. K. Kontos and A. Scorilas, “Kallikrein-related peptidases (KLKs): a gene family of novel cancer biomarkers,” Clinical Chemistry and Laboratory Medicine, vol. 50, pp. 1877–1891, 2012. View at Google Scholar