Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 2014, Article ID 854163, 12 pages
http://dx.doi.org/10.1155/2014/854163
Research Article

Urine Annexin A1 as an Index for Glomerular Injury in Patients

1Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
2Department of Animal Pharmacology, Development Center for Biotechnology, Taipei, Taiwan
3Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
4Division of Endocrinology & Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
5Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
6Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan

Received 27 June 2013; Accepted 20 October 2013; Published 20 January 2014

Academic Editor: Benoit Dugue

Copyright © 2014 Shuk-Man Ka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Ishani, G. A. Grandits, R. H. Grimm et al., “Association of single measurements of dipstick proteinuria, estimated glomerular filtration rate, and hematocrit with 25-year incidence of end-stage renal disease in the multiple risk factor intervention trial,” Journal of the American Society of Nephrology, vol. 17, no. 5, pp. 1444–1452, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. W. F. Keane, Z. Zhang, P. A. Lyle et al., “Risk scores for predicting outcomes in patients with type 2 diabetes and nephropathy: the RENAAL study,” Clinical journal of the American Society of Nephrology, vol. 1, no. 4, pp. 761–767, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. H. Rosner, “Urinary biomarkers for the detection of renal injury,” Advances in clinical chemistry, vol. 49, pp. 73–97, 2009. View at Google Scholar · View at Scopus
  4. J. R. Timoshanko and P. G. Tipping, “Resident kidney cells and their involvement in glomerulonephritis,” Current Drug Targets: Inflammation and Allergy, vol. 4, no. 3, pp. 353–362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. B. Fogo, “Mechanisms of progression of chronic kidney disease,” Pediatric Nephrology, vol. 22, no. 12, pp. 2011–2022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. L. Olson and R. H. Heptinstall, “Biology of disease. Nonimmunologic mechanisms of glomerular injury,” Laboratory Investigation, vol. 59, no. 5, pp. 564–578, 1988. View at Google Scholar · View at Scopus
  7. P. W. Mathieson, “Glomerulonephritis: is it worth worrying about?” Clinical Medicine, vol. 5, no. 3, pp. 264–266, 2005. View at Google Scholar · View at Scopus
  8. H.-A. Shui, T.-H. Huang, S.-M. Ka, P.-H. Chen, Y.-F. Lin, and A. Chen, “Urinary proteome and potential biomarkers associated with serial pathogenesis steps of focal segmental glomerulosclerosis,” Nephrology Dialysis Transplantation, vol. 23, no. 1, pp. 176–185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. C.-W. Cheng, A. Rifai, K. A. Shuk-Man et al., “Calcium-binding proteins annexin A2 and S100A6 are sensors of tubular injury and recovery in acute renal failure,” Kidney International, vol. 68, no. 6, pp. 2694–2703, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S.-M. Ka, A. Rifai, J.-H. Chen et al., “Glomerular crescent-related biomarkers in a murine model of chronic graft versus host disease,” Nephrology Dialysis Transplantation, vol. 21, no. 2, pp. 288–298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Gerke and S. E. Moss, “Annexins: from structure to function,” Physiological Reviews, vol. 82, no. 2, pp. 331–371, 2002. View at Google Scholar · View at Scopus
  12. A. C. Rintala-Dempsey, A. Rezvanpour, and G. S. Shaw, “S100-annexin complexes—structural insights,” The FEBS Journal, vol. 275, no. 20, pp. 4956–4966, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. L. H. K. Lim and S. Pervaiz, “Annexin 1: the new face of an old molecule,” The FASEB Journal, vol. 21, no. 4, pp. 968–975, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Perretti and R. J. Flower, “Annexin 1 and the biology of the neutrophil,” Journal of Leukocyte Biology, vol. 76, no. 1, pp. 25–29, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Perretti and F. N. E. Gavins, “Annexin 1: an endogenous anti-inflammatory protein,” News in Physiological Sciences, vol. 18, no. 2, pp. 60–64, 2003. View at Google Scholar · View at Scopus
  16. L. Tatenhorst, U. Rescher, V. Gerke, and W. Paulus, “Knockdown of annexin 2 decreases migration of human glioma cells in vitro,” Neuropathology and Applied Neurobiology, vol. 32, no. 3, pp. 271–277, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. Ling, A. T. Jacovina, A. Deora et al., “Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo,” Journal of Clinical Investigation, vol. 113, no. 1, pp. 38–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Biener, R. Feinstein, M. Mayak, Y. Kaburagi, T. Kadowaki, and Y. Zick, “Annexin II is a novel player in insulin signal transduction: possible association between annexin II phosphorylation and insulin receptor internalization,” Journal of Biological Chemistry, vol. 271, no. 46, pp. 29489–29496, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. J. F. A. Swisher, U. Khatri, and G. M. Feldman, “Annexin A2 is a soluble mediator of macrophage activation,” Journal of Leukocyte Biology, vol. 82, no. 5, pp. 1174–1184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. L. A. Borthwick, J. Mcgaw, G. Conner et al., “The formation of the cAMP/protein kinase A-dependent annexin 2-S100A10 complex with cystic fibrosis conductance regulator protein (CFTR) regulates CFTR channel function,” Molecular Biology of the Cell, vol. 18, no. 9, pp. 3388–3397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. F. H. C. Tsao, K. C. Meyer, X. Chen, N. S. Rosenthal, and J. Hu, “Degradation of annexin I in bronchoalveolar lavage fluid from patients with cystic fibrosis,” American Journal of Respiratory Cell and Molecular Biology, vol. 18, no. 1, pp. 120–128, 1998. View at Google Scholar · View at Scopus
  22. T. Masaki, M. Tokuda, M. Ohnishi et al., “Enhanced expression of the protein kinase substrate annexin I in human hepatocellular carcinoma,” Hepatology, vol. 24, no. 1, pp. 72–81, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. H. S. Mohammad, K. Kurokohchi, H. Yoneyama et al., “Annexin A2 expression and phosphorylation are up-regulated in hepatocellular carcinoma,” International Journal of Oncology, vol. 33, no. 6, pp. 1157–1163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. P. Paweletz, D. K. Ornstein, M. J. Roth et al., “Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma,” Cancer Research, vol. 60, no. 22, pp. 6293–6297, 2000. View at Google Scholar · View at Scopus
  25. Y. Shiozawa, A. M. Havens, Y. Jung et al., “Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer,” Journal of Cellular Biochemistry, vol. 105, no. 2, pp. 370–380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Xin, D. R. Rhodes, C. Ingold, A. M. Chinnaiyan, and M. A. Rubin, “Dysregulation of the annexin family protein family is associated with prostate cancer progression,” American Journal of Pathology, vol. 162, no. 1, pp. 255–261, 2003. View at Google Scholar · View at Scopus
  27. X.-F. Bai, X.-G. Ni, P. Zhao et al., “Overexpression of annexin 1 in pancreatic cancer and its clinical significance,” World Journal of Gastroenterology, vol. 10, no. 10, pp. 1466–1470, 2004. View at Google Scholar · View at Scopus
  28. E. Ortiz-Zapater, S. Peiró, O. Roda et al., “Tissue plasminogen activator induces pancreatic cancer cell proliferation by a non-catalytic mechanism that requires extracellular signal-regulated kinase 1/2 activation through epidermal growth factor receptor and annexin A2,” American Journal of Pathology, vol. 170, no. 5, pp. 1573–1584, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. R. Sharma, L. Koltowski, R. T. Ownbey, G. P. Tuszynski, and M. C. Sharma, “Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression,” Experimental and Molecular Pathology, vol. 81, no. 2, pp. 146–156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Shen, H. R. Chang, Z. Chen et al., “Loss of annexin A1 expression in human breast cancer detected by multiple high-throughput analyses,” Biochemical and Biophysical Research Communications, vol. 326, no. 1, pp. 218–227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Shen, F. Nooraie, Y. Elshimali et al., “Decreased expression of annexin A1 is correlated with breast cancer development and progression as determined by a tissue microarray analysis,” Human Pathology, vol. 37, no. 12, pp. 1583–1591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Domoto, Y. Miyama, H. Suzuki et al., “Evaluation of S100A10, annexin II and B-FABP expression as markers for renal cell carcinoma,” Cancer Science, vol. 98, no. 1, pp. 77–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Solito, A. Kamal, F. Russo-Marie, J. C. Buckingham, S. Marullo, and M. Perretti, “A novel calcium-dependent proapoptotic effect of annexin 1 on human neutrophils,” The FASEB journal, vol. 17, no. 11, pp. 1544–1546, 2003. View at Google Scholar · View at Scopus
  34. P.-Y. Tsai, S.-M. Ka, T.-K. Chao et al., “Antroquinonol reduces oxidative stress by enhancing the Nrf2 signaling pathway and inhibits inflammation and sclerosis in focal segmental glomerulosclerosis mice,” Free Radical Biology and Medicine, vol. 50, no. 11, pp. 1503–1516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Chen, L.-F. Sheu, Y.-S. Ho et al., “Experimental focal segmental glomerulosclerosis in mice,” Nephron, vol. 78, no. 4, pp. 440–452, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Romundstad, J. Holmen, K. Kvenild, H. Hallan, and H. Ellekjær, “Microalbuminuria and all-cause mortality in 2,089 apparently healthy individuals: a 4.4-year follow-up study. The Nord-Trøndelag Health Study (HUNT), Norway,” American Journal of Kidney Diseases, vol. 42, no. 3, pp. 466–473, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. Expert Committee on the Diagnosis Clasification of Diabetes Mellitus, “American diabetes association: clinical practice recommendations,” Diabetes Care, vol. 25, supplement 1, pp. 1–147, 2002. View at Google Scholar
  38. H.-A. Shui, S.-M. Ka, S.-M. Yang, Y.-F. Lin, Y.-F. Lo, and A. Chen, “Osteopontin as an injury marker expressing in epithelial hyperplasia lesions helpful in prognosis of focal segmental glomerulosclerosis,” Translational Research, vol. 150, no. 4, pp. 216–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Yu, L.-H. Wu, Y. Tan et al., “Tubulointerstitial lesions of patients with lupus nephritis classified by the 2003 international society of nephrology and renal pathology society system,” Kidney International, vol. 77, no. 9, pp. 820–829, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. C.-W. Cheng, S.-M. Ka, S.-M. Yang et al., “Nephronectin expression in nephrotoxic acute tubular necrosis,” Nephrology Dialysis Transplantation, vol. 23, no. 1, pp. 101–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Y. Lan, X. Q. Yu, N. Yang et al., “De novo glomerular osteopontin expression in rat crescentic glomerulonephritis,” Kidney International, vol. 53, no. 1, pp. 136–145, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. G. B. Fogazzi, L. Saglimbeni, G. Banfi et al., “Urinary sediment features in proliferative and non-proliferative glomerular diseases,” Journal of Nephrology, vol. 18, no. 6, pp. 703–710, 2005. View at Google Scholar · View at Scopus
  43. R. Minutolo, M. M. Balletta, F. Catapano et al., “Mesangial hypercellularity predicts antiproteinuric response to dual blockade of RAS in primary glomerulonephritis,” Kidney International, vol. 70, no. 6, pp. 1170–1176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Jiang, G. Guan, R. Zhang et al., “Increased urinary excretion of orosomucoid is a risk predictor of diabetic nephropathy,” Nephrology, vol. 14, no. 3, pp. 332–337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Vong, F. D'Acquisto, M. Pederzoli-Ribeil et al., “Annexin 1 cleavage in activated neutrophils: a pivotal role for proteinase 3,” Journal of Biological Chemistry, vol. 282, no. 41, pp. 29998–30004, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Scannell, M. B. Flanagan, A. DeStefani et al., “Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages,” Journal of Immunology, vol. 178, no. 7, pp. 4595–4605, 2007. View at Google Scholar · View at Scopus
  47. M. L. Caramori, P. Fioretto, and M. Mauer, “The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient?” Diabetes, vol. 49, no. 9, pp. 1399–1408, 2000. View at Google Scholar · View at Scopus
  48. B. P. Tabaei, A. S. Al-Kassab, L. L. Ilag, C. M. Zawacki, and W. H. Herman, “Does microalbuminuria predict diabetic nephropathy?” Diabetes Care, vol. 24, no. 9, pp. 1560–1566, 2001. View at Google Scholar · View at Scopus
  49. A. Markoff and V. Gerke, “Expression and functions of annexins in the kidney,” American Journal of Physiology: Renal Physiology, vol. 289, no. 5, pp. F949–F956, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Radke, J. Austermann, F. Russo-Marie, V. Gerke, and U. Rescher, “Specific association of annexin 1 with plasma membrane-resident and internalized EGF receptors mediated through the protein core domain,” The FEBS Letters, vol. 578, no. 1-2, pp. 95–98, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. S. Kim, J. Ko, I. S. Kim et al., “PKCδ-dependent cleavage and nuclear translocation of annexin A1 by phorbol 12-myristate 13-acetate,” European Journal of Biochemistry, vol. 270, no. 20, pp. 4089–4094, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. C.-Y. Lin, Y.-M. Jeng, H.-Y. Chou et al., “Nuclear localization of annexin A1 is a prognostic factor in oral squamous cell carcinoma,” Journal of Surgical Oncology, vol. 97, no. 6, pp. 544–550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. D. M. Silverstein, “Inflammation in chronic kidney disease:role in the progression of renal and cardiovascular disease,” Pediatric Nephrology, vol. 24, no. 8, pp. 1445–1452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. S. B. Kim, W. S. Yang, S. O. Lee, K. P. Lee, J. S. Park, and D. S. Na, “Lipocortin-1 inhibits proliferation of cultured human mesangial cells,” Nephron, vol. 74, no. 1, pp. 39–44, 1996. View at Google Scholar · View at Scopus
  55. L. C. Alldridge and C. E. Bryant, “Annexin 1 regulates cell proliferation by disruption of cell morphology and inhibition of cyclin D1 expression through sustained activation of the ERK1/2 MAPK signal,” Experimental Cell Research, vol. 290, no. 1, pp. 93–107, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Huang, Y. Jin, C.-H. Yan et al., “Involvement of Annexin A2 in p53 induced apoptosis in lung cancer,” Molecular and Cellular Biochemistry, vol. 309, no. 1-2, pp. 117–123, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Chuthapisith, B. E. Bean, G. Cowley et al., “Annexins in human breast cancer: possible predictors of pathological response to neoadjuvant chemotherapy,” European Journal of Cancer, vol. 45, no. 7, pp. 1274–1281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Perretti and E. Solito, “Annexin 1 and neutrophil apoptosis,” Biochemical Society Transactions, vol. 32, no. 3, pp. 507–510, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. M. La, M. D'Amico, S. Bandiera et al., “Annexin 1 peptides protect against experimental myocardial ischemia-reperfusion: analysis of their mechanism of action,” The FASEB Journal, vol. 15, no. 12, pp. 2247–2256, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Yang, P. Hutchinson, and E. F. Morand, “Inhibitory effect of annexin I on synovial inflammation in rat adjuvant arthritis,” Arthritis & Rheumatism, vol. 42, pp. 1538–1544, 1999. View at Google Scholar
  61. X. Fan, S. Krahling, D. Smith, P. Williamson, and R. A. Schlegel, “Macrophage surface expression of annexins I and II in the phagocytosis of apoptotic lymphocytes,” Molecular Biology of the Cell, vol. 15, no. 6, pp. 2863–2872, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. S. McArthur, S. Yazid, H. Christian et al., “Annexin A1 regulates hormone exocytosis through a mechanism involving actin reorganization,” The FASEB Journal, vol. 23, no. 11, pp. 4000–4010, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. R. L. Simões and I. M. Fierro, “Involvement of the Rho-kinase/myosin light chain kinase pathway on human monocyte chemotaxis induced by ATL-1, an aspirin-triggered lipoxin A4 synthetic analog,” Journal of Immunology, vol. 175, no. 3, pp. 1843–1850, 2005. View at Google Scholar · View at Scopus
  64. K. Nagatoya, T. Moriyama, N. Kawada et al., “Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction,” Kidney International, vol. 61, no. 5, pp. 1684–1695, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Nishikimi and H. Matsuoka, “Molecular mechanisms and therapeutic strategies of chronic renal injury: renoprotective effect of rho-kinase inhibitor in hypertensive glomerulosclerosis,” Journal of Pharmacological Sciences, vol. 100, no. 1, pp. 22–28, 2006. View at Publisher · View at Google Scholar · View at Scopus