Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 2015, Article ID 368534, 8 pages
http://dx.doi.org/10.1155/2015/368534
Research Article

Vimentin 3, the New Hope, Differentiating RCC versus Oncocytoma

1Institute of Pathology, University Hospital of Cologne, Kerpenerstraße 62, 50924 Cologne, Germany
2Institute of General, Visceral and Minimal Invasive Surgery, Clinic Northwest, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany
3Institute of Pathology, Helios Clinic Wuppertal, University Clinic Witten-Herdecke, Heusnerstraße 40, 42283 Wuppertal, Germany

Received 24 October 2014; Accepted 3 March 2015

Academic Editor: Claudio Letizia

Copyright © 2015 Melanie von Brandenstein et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Hamperl, “Über das Vorkommen von Onkocyten in verschiedenen Organen und ihren Geschwülsten—Mundspeicheldrüsen, Bauchspeicheldrüse, Epithelkörperchen, Hypophyse, Schilddrüse, Eileiter,” Virchows Archiv für Pathologische Anatomie und Physiologie und für Klinische Medizin, vol. 298, no. 2, pp. 327–375, 1936. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Kataoka, Y. Hyo, T. Hoshiya, H. Miyahara, and T. Matsunaga, “Ultrastructural study of mitochondria in oncocytes,” Ultrastructural Pathology, vol. 15, no. 3, pp. 231–239, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Zippel, “Zur Kenntnis der Onkocyten,” Virchows Archiv, vol. 308, no. 2, pp. 360–382, 1942. View at Google Scholar
  4. M. J. Klein and Q. J. Valensi, “Proximal tubular adenomas of kidney with so-called oncocytic features. A clinicopathologic study of 13 cases of a rarely reported neoplasm,” Cancer, vol. 38, no. 2, pp. 906–914, 1976. View at Publisher · View at Google Scholar · View at Scopus
  5. J. D. Oxley, J. Sullivan, A. Mitchelmore, and D. A. Gillatt, “Metastatic renal oncocytoma,” Journal of Clinical Pathology, vol. 60, no. 6, pp. 720–722, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. O. Osunkoya, C. Cohen, D. Lawson, M. M. Picken, M. B. Amin, and A. N. Young, “Claudin-7 and claudin-8: immunohistochemical markers for the differential diagnosis of chromophobe renal cell carcinoma and renal oncocytoma,” Human Pathology, vol. 40, no. 2, pp. 206–210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Waldherr and K. Schwechheimer, “Co-expression of cytokeratin and vimentin intermediate-sized filaments in renal cell carcinomas: comparative study of the intermediate-sized filament distribution in renal cell carcinomas and normal human kidney,” Virchows Archiv A, vol. 408, no. 1, pp. 15–27, 1985. View at Publisher · View at Google Scholar · View at Scopus
  8. O. Hes, M. Michal, N. Kuroda et al., “Vimentin reactivity in renal oncocytoma: immunohistochemical study of 234 cases,” Archives of Pathology and Laboratory Medicine, vol. 131, no. 12, pp. 1782–1788, 2007. View at Google Scholar · View at Scopus
  9. J. Ivaska, H.-M. Pallari, J. Nevo, and J. E. Eriksson, “Novel functions of vimentin in cell adhesion, migration, and signaling,” Experimental Cell Research, vol. 313, no. 10, pp. 2050–2062, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Thakkar, L. Shervington, and A. Shervington, “Proteomic studies coupled with RNAi methodologies can shed further light on the downstream effects of telomerase in glioma,” Cancer Investigation, vol. 29, no. 2, pp. 113–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Malakoutikhah, M. J. Gómara, J. A. Gómez-Puerta, R. Sanmartí, and I. Haro, “The use of chimeric vimentin citrullinated peptides for the diagnosis of rheumatoid arthritis,” Journal of Medicinal Chemistry, vol. 54, no. 21, pp. 7486–7492, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. P. H. Tan, L. Cheng, N. Rioux-Leclercq et al., “Renal tumors: diagnostic and prognostic biomarkers,” The American Journal of Surgical Pathology, vol. 37, no. 10, pp. 1518–1531, 2013. View at Publisher · View at Google Scholar
  13. M. Gerstung, T. Roth, H.-P. Dienes, C. Licht, and J. W. U. Fries, “Endothelin-1 induces NF-κB via two independent pathways in human renal tubular epithelial cells,” American Journal of Nephrology, vol. 27, no. 3, pp. 294–300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. G. von Brandenstein, A. N. Abety, R. Depping et al., “A p38-p65 transcription complex induced by endothelin-1 mediates signal transduction in cancer cells,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1783, no. 9, pp. 1613–1622, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Ikeda, T. Monden, T. Kanoh et al., “Extraction and analysis of diagnostically useful proteins from formalin-fixed, paraffin-embedded tissue sections,” Journal of Histochemistry and Cytochemistry, vol. 46, no. 3, pp. 397–403, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. A. J. Sarria, J. G. Lieber, S. K. Nordeen, and R. M. Evans, “The presence or absence of a vimentin-type intermediate filament network affects the shape of the nucleus in human SW-13 cells,” Journal of Cell Science, vol. 107, no. part 6, pp. 1593–1607, 1994. View at Google Scholar · View at Scopus
  17. S. D. Georgatos and G. Blobel, “Lamin B constitutes an intermediate filament attachment site at the nuclear envelope,” Journal of Cell Biology, vol. 105, no. 1, pp. 117–125, 1987. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Spurny, M. Gregor, M. J. Castañón, and G. Wiche, “Plectin deficiency affects precursor formation and dynamics of vimentin networks,” Experimental Cell Research, vol. 314, no. 19, pp. 3570–3580, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Esue, A. A. Carson, Y. Tseng, and D. Wirtz, “A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin,” The Journal of Biological Chemistry, vol. 281, no. 41, pp. 30393–30399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Krüger, K. Sotlar, I. Kausch, and H.-P. Horny, “Expression of KIT (CD117) in renal cell carcinoma and renal oncocytoma,” Oncology, vol. 68, no. 2-3, pp. 269–275, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Lin, R. E. Brown, T. Shen, X. J. Yang, and C. Schuerch, “Immunohistochemical detection of P504S in primary and metastatic renal cell carcinomas,” Applied Immunohistochemistry and Molecular Morphology, vol. 12, no. 2, pp. 153–159, 2004. View at Google Scholar · View at Scopus
  22. V. Molinié, A. Balaton, S. Rotman et al., “Alpha-methyl CoA racemase expression in renal cell carcinomas,” Human Pathology, vol. 37, no. 6, pp. 698–703, 2006. View at Publisher · View at Google Scholar · View at Scopus