Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 2016, Article ID 4714910, 3 pages
http://dx.doi.org/10.1155/2016/4714910
Editorial

Disease Biomarkers in Gastrointestinal Malignancies

1Department of Surgery, University of Alabama, Birmingham, AL 35233, USA
2Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada M5G 2M9
3Department of Surgery, Drexel University, Philadelphia, PA 19102, USA
4Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad 91967, Iran
5Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA

Received 28 April 2016; Accepted 28 April 2016

Copyright © 2016 Omeed Moaven et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Y. Locker, S. Hamilton, J. Harris et al., “ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer,” Journal of Clinical Oncology, vol. 24, no. 33, pp. 5313–5327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Duffy, A. van Dalen, C. Haglund et al., “Tumour markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines for clinical use,” European Journal of Cancer, vol. 43, no. 9, pp. 1348–1360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. E. M. Stoffel, P. B. Mangu, S. B. Gruber et al., “Hereditary colorectal cancer syndromes: American Society of Clinical Oncology Clinical Practice Guideline endorsement of the familial risk-colorectal cancer: European Society for Medical Oncology Clinical Practice Guidelines,” Journal of Clinical Oncology, vol. 33, no. 2, pp. 209–217, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. C. J. Allegra, R. B. Rumble, S. R. Hamilton et al., “Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015,” Journal of Clinical Oncology, vol. 34, no. 2, pp. 179–185, 2016. View at Publisher · View at Google Scholar · View at Scopus
  5. Group EESNW, “Gastrointestinal stromal tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up,” Annals of Oncology, vol. 23, supplement 7, pp. vii49–vii55, 2012. View at Publisher · View at Google Scholar
  6. J. Rüschoff, M. Dietel, G. Baretton et al., “HER2 diagnostics in gastric cancer-guideline validation and development of standardized immunohistochemical testing,” Virchows Archiv, vol. 457, no. 3, pp. 299–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Harada and S. Ozaki, “Targeted therapy for HM1.24 (CD317) on multiple myeloma cells,” BioMed Research International, vol. 2014, Article ID 965384, 7 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Ozaki, M. Kosaka, Y. Wakahara et al., “Humanized anti-HM1.24 antibody mediates myeloma cell cytotoxicity that is enhanced by cytokine stimulation of effector cells,” Blood, vol. 93, no. 11, pp. 3922–3930, 1999. View at Google Scholar · View at Scopus
  9. A. Jalili, S. Ozaki, T. Hara et al., “Induction of HM1.24 peptide-specific cytotoxic T lymphocytes by using peripheral-blood stem-cell harvests in patients with multiple myeloma,” Blood, vol. 106, no. 10, pp. 3538–3545, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. B. Rew, K. Peggs, I. Sanjuan et al., “Generation of potent antitumor CTL from patients with multiple myeloma directed against HM1.24,” Clinical Cancer Research, vol. 11, no. 9, pp. 3377–3384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. E. S. Leman, A. Magheli, G. W. Cannon, L. Mangold, A. W. Partin, and R. H. Getzenberg, “Analysis of a serum test for prostate cancer that detects a second epitope of EPCA-2,” Prostate, vol. 69, no. 11, pp. 1188–1194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Xu, Z. Shen, D. W. Wiper et al., “Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers,” The Journal of the American Medical Association, vol. 280, no. 8, pp. 719–723, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. J.-H. Kim, S. J. Skates, T. Uede et al., “Osteopontin as a potential diagnostic biomarker for ovarian cancer,” The Journal of the American Medical Association, vol. 287, no. 13, pp. 1671–1679, 2002. View at Publisher · View at Google Scholar · View at Scopus