Table of Contents Author Guidelines Submit a Manuscript
Disease Markers
Volume 2016, Article ID 9085195, 10 pages
http://dx.doi.org/10.1155/2016/9085195
Review Article

Long Noncoding RNAs as Novel Biomarkers Have a Promising Future in Cancer Diagnostics

Faculty of Laboratory Medicine, Xiangya Medical College, Central South University, Changsha, Hunan 41001, China

Received 3 December 2015; Revised 14 March 2016; Accepted 16 March 2016

Academic Editor: Lance A. Liotta

Copyright © 2016 Ting Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. P. Ponting and T. G. Belgard, “Transcribed dark matter: meaning or myth?” Human Molecular Genetics, vol. 19, no. 2, pp. R162–R168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Wapinski and H. Y. Chang, “Long noncoding RNAs and human disease,” Trends in Cell Biology, vol. 21, no. 6, pp. 354–361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. C. A. Brosnan and O. Voinnet, “The long and the short of noncoding RNAs,” Current Opinion in Cell Biology, vol. 21, no. 3, pp. 416–425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. V. Iorio and C. M. Croce, “MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review,” EMBO Molecular Medicine, vol. 4, no. 3, pp. 143–159, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Weber, D. H. Baxter, S. Zhang et al., “The microRNA spectrum in 12 body fluids,” Clinical Chemistry, vol. 56, no. 11, pp. 1733–1741, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Molina-Pinelo, R. Suárez, M. D. Pastor et al., “Association between the miRNA signatures in plasma and bronchoalveolar fluid in respiratory pathologies,” Disease Markers, vol. 32, no. 4, pp. 221–230, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Kosaka, H. Izumi, K. Sekine, and T. Ochiya, “MicroRNA as a new immune-regulatory agent in breast milk,” Silence, vol. 1, no. 1, article 7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Qu, W. Xu, Y. Huang, and S. Yang, “Circulating miRNAs: promising biomarkers of human cancer,” Asian Pacific Journal of Cancer Prevention, vol. 12, no. 5, pp. 1117–1125, 2011. View at Google Scholar · View at Scopus
  9. R. Duttagupta, R. Jiang, J. Gollub, R. C. Getts, and K. W. Jones, “Impact of cellular miRNAs on circulating miRNA biomarker signatures,” PLoS ONE, vol. 6, no. 6, Article ID e20769, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. H. I. Pass, D. G. Beer, S. Joseph, and P. Massion, “Biomarkers and molecular testing for early detection, diagnosis, and therapeutic prediction of lung cancer,” Thoracic Surgery Clinics, vol. 23, no. 2, pp. 211–224, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. T. R. Mercer, M. E. Dinger, and J. S. Mattick, “Long non-coding RNAs: insights into functions,” Nature Reviews Genetics, vol. 10, no. 3, pp. 155–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Huang, N. Liu, J. P. Wang et al., “Regulatory long non-coding RNA and its functions,” Journal of Physiology and Biochemistry, vol. 68, no. 4, pp. 611–618, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Zhang, Z. Chen, X. Wang, Z. Huang, Z. He, and Y. Chen, “Long non-coding RNA: a new player in cancer,” Journal of Hematology and Oncology, vol. 6, no. 1, article 37, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. M.-T. Qiu, J.-W. Hu, R. Yin, and L. Xu, “Long noncoding RNA: an emerging paradigm of cancer research,” Tumor Biology, vol. 34, no. 2, pp. 613–620, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. J. E. Wilusz, H. Sunwoo, and D. L. Spector, “Long noncoding RNAs: functional surprises from the RNA world,” Genes and Development, vol. 23, no. 13, pp. 1494–1504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Xu, S. Sui, J. Zhang et al., “Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3K-AKT pathway in breast cancer,” International Journal of Clinical and Experimental Pathology, vol. 8, no. 5, pp. 4881–4891, 2015. View at Google Scholar · View at Scopus
  17. Q. Ji, X. Liu, X. Fu et al., “Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway,” PLoS ONE, vol. 8, no. 11, Article ID e78700, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Arita, D. Ichikawa, H. Konishi et al., “Circulating long non-coding RNAs in plasma of patients with gastric cancer,” Anticancer Research, vol. 33, no. 8, pp. 3185–3194, 2013. View at Google Scholar · View at Scopus
  19. S. Ren, F. Wang, J. Shen et al., “Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer,” European Journal of Cancer, vol. 49, no. 13, pp. 2949–2959, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. D. G. Weber, G. Johnen, S. Casjens et al., “Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer,” BMC Research Notes, vol. 6, article 518, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Gresner, J. Gromadzinska, and W. Wasowicz, “Reference genes for gene expression studies on non-small cell lung cancer,” Acta Biochimica Polonica, vol. 56, no. 2, pp. 307–316, 2009. View at Google Scholar · View at Scopus
  22. X. Zhou, C. Yin, Y. Dang, F. Ye, and G. Zhang, “Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer,” Scientific Reports, vol. 5, Article ID 11516, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Trajkovic, C. Hsu, S. Chiantia et al., “Ceramide triggers budding of exosome vesicles into multivesicular endosomes,” Science, vol. 319, no. 5867, pp. 1244–1247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. R. M. Johnstone, “Exosomes biological significance: a concise review,” Blood Cells, Molecules, and Diseases, vol. 36, no. 2, pp. 315–321, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Huang, T. Yuan, M. Tschannen et al., “Characterization of human plasma-derived exosomal RNAs by deep sequencing,” BMC Genomics, vol. 14, article 319, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. Li, Y. Shao, X. Zhang et al., “Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer,” Tumor Biology, vol. 36, no. 3, pp. 2007–2012, 2015. View at Publisher · View at Google Scholar · View at Scopus
  27. J. D. Arroyo, J. R. Chevillet, E. M. Kroh et al., “Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 12, pp. 5003–5008, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Wang, S. Zhang, J. Weber, D. Baxter, and D. J. Galas, “Export of microRNAs and microRNA-protective protein by mammalian cells,” Nucleic Acids Research, vol. 38, no. 20, pp. 7248–7259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Ji, S. Diederichs, W. Wang et al., “MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer,” Oncogene, vol. 22, no. 39, pp. 8031–8041, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. L. H. Schmidt, T. Spieker, S. Koschmieder et al., “The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth,” Journal of Thoracic Oncology, vol. 6, no. 12, pp. 1984–1992, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Tano, R. Mizuno, T. Okada et al., “MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes,” FEBS Letters, vol. 584, no. 22, pp. 4575–4580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Shen, L. Chen, Y. Wang, X. Jiang, H. Xia, and Z. Zhuang, “Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer,” Journal of Neuro-Oncology, vol. 121, no. 1, pp. 101–108, 2015. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Gutschner, M. Hämmerle, M. Eißmann et al., “The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells,” Cancer Research, vol. 73, no. 3, pp. 1180–1189, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Guo, F. Yu, J. Wang et al., “Expression of MALAT1 in the peripheral whole blood of patients with lung cancer,” Biomedical Reports, vol. 3, no. 3, pp. 309–312, 2015. View at Publisher · View at Google Scholar
  35. S. Ren, Z. Peng, J.-H. Mao et al., “RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings,” Cell Research, vol. 22, no. 5, pp. 806–821, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Ren, Y. Liu, W. Xu et al., “Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer,” The Journal of Urology, vol. 190, no. 6, pp. 2278–2287, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Djavan, A. Zlotta, M. Remzi et al., “Optimal predictors of prostate cancer on repeat prostate biopsy: a prospective study of 1,051 men,” Journal of Urology, vol. 163, no. 4, pp. 1144–1149, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Wang, S. Ren, R. Chen et al., “Development and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary biomarker for prostate cancer,” Oncotarget, vol. 5, no. 22, pp. 11091–11102, 2014. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Song, W. Sun, G. Ye et al., “Long non-coding RNA expression profile in human gastric cancer and its clinical significances,” Journal of Translational Medicine, vol. 11, article 225, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. I. J. Matouk, S. Mezan, A. Mizrahi et al., “The oncofetal H19 RNA connection: hypoxia, p53 and cancer,” Biochimica et Biophysica Acta, vol. 1803, no. 4, pp. 443–451, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Hao, T. Crenshaw, T. Moulton, E. Newcomb, and B. Tycko, “Tumour-suppressor activity of H19 RNA,” Nature, vol. 365, no. 6448, pp. 764–767, 1993. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Li, B. Yu, J. Li et al., “Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer,” Oncotarget, vol. 5, no. 8, pp. 2318–2329, 2014. View at Publisher · View at Google Scholar · View at Scopus
  43. E. L. Kim, R. Wüstenberg, A. Rübsam et al., “Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells,” Neuro-Oncology, vol. 12, no. 4, pp. 389–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Yang, J. Bi, X. Xue et al., “Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells,” FEBS Journal, vol. 279, no. 17, pp. 3159–3165, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Zhuang, W. Gao, J. Xu, P. Wang, and Y. Shu, “The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1,” Biochemical and Biophysical Research Communications, vol. 448, no. 3, pp. 315–322, 2014. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Kogo, T. Shimamura, K. Mimori et al., “Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers,” Cancer Research, vol. 71, no. 20, pp. 6320–6326, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. Z.-H. Wu, X.-L. Wang, H.-M. Tang et al., “Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer,” Oncology Reports, vol. 32, no. 1, pp. 395–402, 2014. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Cai, Z. Wu, K. Liao, and S. Zhang, “Long noncoding RNA HOTAIR can serve as a common molecular marker for lymph node metastasis: a meta-analysis,” Tumor Biology, vol. 35, no. 9, pp. 8445–8450, 2014. View at Publisher · View at Google Scholar · View at Scopus
  49. J. L. Rinn, M. Kertesz, J. K. Wang et al., “Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs,” Cell, vol. 129, no. 7, pp. 1311–1323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. M.-C. Tsai, O. Manor, Y. Wan et al., “Long noncoding RNA as modular scaffold of histone modification complexes,” Science, vol. 329, no. 5992, pp. 689–693, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. R. A. Gupta, N. Shah, K. C. Wang et al., “Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis,” Nature, vol. 464, no. 7291, pp. 1071–1076, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Wu, H. Zeng, A. Dong et al., “Structure of the catalytic domain of EZH2 reveals conformational plasticity in cofactor and substrate binding sites and explains oncogenic mutations,” PLoS ONE, vol. 8, no. 12, Article ID e83737, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Svoboda, J. Slyskova, M. Schneiderova et al., “HOTAIR long non-coding RNA is a negative prognostic factor not only in primary tumors, but also in the blood of colorectal cancer patients,” Carcinogenesis, vol. 35, no. 7, pp. 1510–1515, 2014. View at Publisher · View at Google Scholar · View at Scopus
  54. E. A. Gibb, K. S. S. Enfield, G. L. Stewart et al., “Long non-coding RNAs are expressed in oral mucosa and altered in oral premalignant lesions,” Oral Oncology, vol. 47, no. 11, pp. 1055–1061, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Wu and H. Xie, “Expression of long noncoding RNA-HOX transcript antisense intergenic RNA in oral squamous cell carcinoma and effect on cell growth,” Tumor Biology, vol. 36, no. 11, pp. 8573–8578, 2015. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Wu, L. Zhang, L. Zhang et al., “Long non-coding RNA HOTAIR promotes tumor cell invasion and metastasis by recruiting EZH2 and repressing E-cadherin in oral squamous cell carcinoma,” International Journal of Oncology, vol. 46, no. 6, pp. 2586–2594, 2015. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Wang, X. Liu, Z. Chen et al., “Polycomb group protein EZH2-mediated E-cadherin repression promotes metastasis of oral tongue squamous cell carcinoma,” Molecular Carcinogenesis, vol. 52, no. 3, pp. 229–236, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Liu, Z. Xu, L. Zhong et al., “Enhancer of zeste homolog 2 (EZH2) promotes tumour cell migration and invasion via epigenetic repression of E-cadherin in renal cell carcinoma,” BJU International, vol. 117, no. 2, pp. 351–362, 2016. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Tang, Z. Wu, J. Zhang, and B. Su, “Salivary lncRNA as a potential marker for Oral squamous cell carcinoma diagnosis,” Molecular Medicine Reports, vol. 7, no. 3, pp. 761–766, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. Q. Pang, J. Ge, Y. Shao et al., “Increased expression of long intergenic non-coding RNA LINC00152 in gastric cancer and its clinical significance,” Tumor Biology, vol. 35, no. 6, pp. 5441–5447, 2014. View at Publisher · View at Google Scholar · View at Scopus
  61. W.-J. Cao, H.-L. Wu, B.-S. He, Y.-S. Zhang, and Z.-Y. Zhang, “Analysis of long non-coding RNA expression profiles in gastric cancer,” World Journal of Gastroenterology, vol. 19, no. 23, pp. 3658–3664, 2013. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Cui, X. Zhang, G. Ye et al., “Gastric juice MicroRNAs as potential biomarkers for the screening of gastric cancer,” Cancer, vol. 119, no. 9, pp. 1618–1626, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. J. R. Prensner and A. M. Chinnaiyan, “The emergence of lncRNAs in cancer biology,” Cancer Discovery, vol. 1, no. 5, pp. 391–407, 2011. View at Publisher · View at Google Scholar · View at Scopus