Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 134545, 12 pages
http://dx.doi.org/10.1093/ecam/nep103
Original Article

Electroacupuncture Zusanli (ST36) on Release of Nitric Oxide in the Gracile Nucleus and Improvement of Sensory Neuropathies in Zucker Diabetic Fatty Rats

Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles, Harbor-UCLA Medical Center, Torrance, CA 90502, USA

Received 23 April 2009; Accepted 8 July 2009

Copyright © 2011 Pei-Jing Rong and Sheng-Xing Ma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. Dyck, K. M. Kratz, J. L. Karnes et al., “The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the rochester diabetic neuropathy study,” Neurology, vol. 43, no. 4 I, pp. 817–824, 1993. View at Google Scholar · View at Scopus
  2. C. F. Corbett, “Practical management of patients with painful diabetic neuropathy,” Diabetes Educator, vol. 31, no. 4, pp. 523–540, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. B. Clark, C. J. Palmer, and W. N. Shaw, “The diabetic Zucker fatty rat,” Proceedings of the Society for Experimental Biology and Medicine, vol. 173, no. 1, pp. 68–75, 1983. View at Google Scholar · View at Scopus
  4. R. G. Peterson, “The zucker diabetic fatty (ZDF) rat,” in Lessons from Animal Diabetes, E. Shafrir, Ed., pp. 225–230, Smith Gordon, Cambridge, UK, 5th edition, 1995. View at Google Scholar
  5. C. L. Oltman, L. J. Coppey, J. S. Gellett, E. P. Davidson, D. D. Lund, and M. A. Yorek, “Progression of vascular and neural dysfunction in sciatic nerves of Zucker diabetic fatty and Zucker rats,” American Journal of Physiology, vol. 289, no. 1, pp. E113–E122, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. H. X. Zhuang, L. Wuarin, Z. J. Fei, and D. N. Ishii, “Insulin-like growth factor (IGF) gene expression is reduced in neural tissues and liver from rats with non-insulin-dependent diabetes mellitus, and IGF treatment ameliorates diabetic neuropathy,” Journal of Pharmacology and Experimental Therapeutics, vol. 283, pp. 366–374, 1997. View at Google Scholar
  7. R. E. Schmidt, D. A. Dorsey, L. N. Beaudet, and R. G. Peterson, “Analysis of the Zucker Diabetic Fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy,” American Journal of Pathology, vol. 163, no. 1, pp. 21–28, 2003. View at Google Scholar · View at Scopus
  8. V. Brussee, G. Guo, Y. Dong et al., “Distal degenerative sensory neuropathy in a long-term type 2 diabetes rat model,” Diabetes, vol. 57, no. 6, pp. 1664–1673, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. J. M. Boulton and J. D. Ward, “Diabetic neuropathies and pain,” Clinics in Endocrinology and Metabolism, vol. 15, no. 4, pp. 917–931, 1986. View at Google Scholar · View at Scopus
  10. M. S. Chong and Z. H. Bajwa, “Diagnosis and treatment of neuropathic pain,” Journal of Pain and Symptom Management, vol. 25, no. 5, pp. S4–S11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Brunelli and K. C. Gorson, “The use of complementary and alternative medicines by patients with peripheral neuropathy,” Journal of the Neurological Sciences, vol. 218, no. 1-2, pp. 59–66, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. B. Qin, M. Nagasaki, M. Ren, G. Bajotto, Y. Oshida, and Y. Sato, “Gosha-jinki-gan (a herbal complex) corrects abnormal insulin signaling,” Evidence-Based Complementary and Alternative Medicine, vol. 1, pp. 269–276, 2004. View at Google Scholar
  13. R. Xia, P. Huang, and G.-M. Shao, “Nourishing Yin and promoting blood circulation of TCM to treat hemorheologic disorder induced by diabetes mellitus in rats,” Evidence-Based Complementary and Alternative Medicine, vol. 4, no. 2, pp. 203–207, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. A. C. Ahn, T. Bennani, R. Freeman, H. Osama, and T. J. Kaptchuk, “Two styles acupuncture for treating painful diabetic neuropathy—a pilot randomized control trail,” Occupational Medicine, vol. 25, pp. 11–17, 2007. View at Google Scholar
  15. B. B. Abuaisha, J. B. Costanzi, and A. J. M. Boulton, “Acupuncture for the treatment of chronic painful peripheral diabetic neuropathy: a long-term study,” Diabetes Research and Clinical Practice, vol. 39, no. 2, pp. 115–121, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. P. J. Goodnick, K. B. Breakstone, X.-L. Wen, and A. Kumar, “Acupuncture and neuropathy,” American Journal of Psychiatry, vol. 157, no. 8, pp. 1342–1343, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. J.-S. Han, “Acupuncture and endorphins,” Neuroscience Letters, vol. 361, no. 1—3, pp. 258–261, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. S. L. Chang, J. G. Lin, T. C. Chi, I. M. Liu, and J. T. Cheng, “An insulin-dependent hypoglycaemia induced by electroacupuncture at the Zhongwan (CV12) acupoint in diabetic rats,” Diabetologia, vol. 42, no. 2, pp. 250–255, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. S. X. Ma, “Neurobiology of acupuncture: toward CAM,” Evidence-Based Complementary and Alternative Medicine, vol. 1, pp. 41–47, 2004. View at Google Scholar
  20. J. W. Leem, B. H. Lee, W. D. Willis, and J. M. O. Chung, “Grouping of somatosensory neurons in the spinal cord and the gracile nucleus of the rat by cluster analysis,” Journal of Neurophysiology, vol. 72, no. 6, pp. 2590–2597, 1994. View at Google Scholar · View at Scopus
  21. T. Ueyama, T. Houtani, M. Ikeda, K. Sato, T. Sugimoto, and N. Mizuno, “Distribution of primary afferent fibers projecting from hindlimb cutaneous nerves to the medulla oblongata in the cat and rat,” Journal of Comparative Neurology, vol. 341, no. 2, pp. 145–158, 1994. View at Google Scholar · View at Scopus
  22. E. D. Al-Chaer, N. B. Lawand, K. N. Westlund, and W. D. Willis, “Visceral nociceptive input into the ventral posterolateral nucleus of the thalamus: a new function for the dorsal column pathway,” Journal of Neurophysiology, vol. 76, no. 4, pp. 2661–2674, 1996. View at Google Scholar · View at Scopus
  23. E. D. Al-Chaer, N. B. Lawand, K. N. Westlund, and W. D. Willis, “Pelvic visceral input into the nucleus gracilis is largely mediated by the postsynaptic dorsal column pathway,” Journal of Neurophysiology, vol. 76, no. 4, pp. 2675–2690, 1996. View at Google Scholar · View at Scopus
  24. E. D. Al-Chaer, K. N. Westlund, and W. D. Willis, “Nucleus gracilis: an integrator for visceral and somatic information,” Journal of Neurophysiology, vol. 78, no. 1, pp. 521–527, 1997. View at Google Scholar · View at Scopus
  25. S. X. Ma and X. Y. Li, “Increased neuronal nitric oxide synthase expression in the gracile nucleus of brainstem following electroacupuncture given between cutaneous hindlimb acupuncture points BL 64 and BL65 in rats,” International Journal of Impotence Research, vol. 27, pp. 157–169, 2002. View at Google Scholar
  26. S.-X. Ma, J. Ma, G. Moise, and X.-Y. Li, “Responses of neuronal nitric oxide synthase expression in the brainstem to electroacupuncture Zusanli (ST 36) in rats,” Brain Research, vol. 1037, no. 1-2, pp. 70–77, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. S. X. Ma, M. E. Comford, I. Vahabnezhad, and S. M. Wei, “Responses of nitric oxide synthase expression in the gracile nucleus to sciatic nerve injury in young and aged rats,” Brain Research, vol. 855, pp. 124–131, 2000. View at Google Scholar
  28. S. Chen and S.-X. Ma, “Nitric oxide in the gracile nucleus mediates depressor response to acupuncture (ST36),” Journal of Neurophysiology, vol. 90, no. 2, pp. 780–785, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. S. S. Gross and M. S. Wolin, “Nitric oxide: pathophysiological mechanisms,” Annual Review of Physiology, vol. 57, pp. 737–769, 1995. View at Google Scholar · View at Scopus
  30. T. Sasaki, H. Yasuda, K. Maeda, and R. Kikkawa, “Hyperalgesia and decreased neuronal nitric oxide synthase in diabetic rats,” NeuroReport, vol. 9, no. 2, pp. 243–247, 1998. View at Google Scholar · View at Scopus
  31. L. Rodella, R. Rezzani, G. Corsetti, and R. Bianchi, “Nitric oxide involvement in the trigeminal hyperalgesia in diabetic rats,” Brain Research, vol. 865, no. 1, pp. 112–115, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Mizushima, K. Obata, H. Yamanaka et al., “Activation of p38 MAPK in primary afferent neurons by noxious stimulation and its involvement in the development of thermal hyperalgesia,” Pain, vol. 113, no. 1-2, pp. 51–60, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. T. Yamamoto, T. Wada, and R. Miyazaki, “Analgesic effects of intrathecally administered 26RFa, an intrinsic agonist for GPR103, on formalin test and carrageenan test in rats,” Neuroscience, vol. 157, no. 1, pp. 214–222, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. K. Hargreaves, R. Dubner, F. Brown, C. Flores, and J. Joris, “A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia,” Pain, vol. 32, no. 1, pp. 77–88, 1988. View at Google Scholar · View at Scopus
  35. PD Shailesh, KT Surendra, K Dinesh, KN Ajit, and V Raviprakash, “Ameliorative effect of combined administration of inducible nitric oxide synthase inhibitor with cyclooxygenase-2 inhibitors in neuropathic pain in rats,” European Journal of Pain, vol. 11, no. 5, pp. 528–534, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. J. H. Lee and A. J. Beitz, “The distribution of brain-stem and spinal cord nuclei associated with different frequencies of electroacupuncture analgesia,” Pain, vol. 52, pp. 11–28, 1993. View at Google Scholar
  37. L. Lao, R.-X. Zhang, G. Zhang, X. Wang, B. M. Berman, and K. Ren, “A parametric study of electroacupuncture on persistent hyperalgesia and Fos protein expression in rats,” Brain Research, vol. 1020, no. 1-2, pp. 18–29, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. S.-X. Ma, A. Ji, M. Pandjaitan, and G. Ojije, “Enhanced nitric oxide release/synthesis in the posterior hypothalamus during nitroglycerin tolerance in rats,” European Journal of Pharmacology, vol. 472, no. 3, pp. 179–187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. R. L'Heureux, T. Dennis, O. Curet, and B. Scatton, “Measurement of endogenous noradrenaline release in the rat cerebral cortex in vivo by transcortical dialysis: effects of drugs affecting noradrenergic transmission,” Journal of Neurochemistry, vol. 46, pp. 1794–1801, 1986. View at Google Scholar
  40. S. Chen and S. Ma, “Effects of L-arginine-derived nitric oxide synthesis on cardiovascular responses to stimulus-evoked somatosympathetic reflexes in the gracile nucleus,” Brain Research, vol. 958, no. 2, pp. 330–337, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. S. X. Ma, L. J. Ignarro, R. Byrns, and X. Y. Li, “Increased nitric oxide production in posterior hypothalamus and central sympathetic function on arterial pressure tolerance to nitroglycerin in rats,” Nitric Oxide: Biology and Chemistry, vol. 3, pp. 153–161, 1999. View at Google Scholar
  42. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates. Compact Third Edition, Elsevier, San Diego, Calif, USA, 2005.
  43. Y. Shimoshige, K. Ikuma, T. Yamamoto et al., “The effects of zenarestat, an aldose reductase inhibitor, on peripheral neuropathy in Zucker diabetic fatty rats,” Metabolism, vol. 49, no. 11, pp. 1395–1399, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. Q. Wang, L.-M. Mao, and J.-S. Han, “Diencephalon as a cardinal neural structure for mediating 2 Hz- but not 100 Hz-electroacupuncture-induced tail flick reflex suppression,” Behavioural Brain Research, vol. 37, no. 2, pp. 149–156, 1990. View at Publisher · View at Google Scholar · View at Scopus
  45. J. S. Han, X. H. Chen, S. L. Sun, X. J. Xu, Y. Yuan, and S. C. Yan, “Effect of low- and high-frequency TENS on metenkephalin-Arg-Phe and dynorphin a immunoreactivity in human lumbar CSF,” Pain, vol. 47, pp. 295–298, 1991. View at Google Scholar
  46. D. Irnich, S. Winklmeier, A. Beyer, and K. Peter, “Electric stimulation acupuncture in peripheral neuropathic pain syndromes. Clinical pilot study on analgesic effectiveness,” Der Schmerz, vol. 16, pp. 114–120, 2002. View at Google Scholar
  47. K. D. Cliffer, T. Hasegawa, and W. D. Willis, “Responses of neurons in the gracile nucleus of cats to innocuous and noxious stimuli: basic characterization and antidromic activation from the thalamus,” Journal of Neurophysiology, vol. 68, no. 3, pp. 818–832, 1992. View at Google Scholar · View at Scopus
  48. X. Zhang, B. Meister, R. Elde, V. M. K. Verge, and T. Hokfelt, “Large calibre primary afferent neurons projecting to the gracile nucleus express neuropeptide Y after sciatic nerve lesions: an immunohistochemical and in situ hybridization study in rats,” European Journal of Neuroscience, vol. 5, pp. 1510–1519, 1993. View at Google Scholar
  49. A. Sato, Y. Sato, and A. Suzuki, “Mechanism of the reflex inhibition of micturition contractions of the urinary bladder elicited by acupuncture-like stimulation in anesthetized rats,” Neuroscience Research, vol. 15, no. 3, pp. 189–198, 1992. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Sato, Y. Sato, A. Suzuki, and S. Uchida, “Neural mechanisms of the reflex inhibition and excitation of gastric motility elicited by acupuncture-like stimulation in anesthetized rats,” Neuroscience Research, vol. 18, pp. 53–62, 1993. View at Google Scholar
  51. A. Kumar, R. Raghubir, R. C. Srimal, and B. N. Dhawan, “Evidence for involvement of nitric oxide in pretectal analgesia in rat,” NeuroReport, vol. 4, no. 6, pp. 706–708, 1993. View at Google Scholar · View at Scopus
  52. U. Pehl and H. A. Schmid, “Electrophysiological responses of neurons in the rat spinal cord to nitric oxide,” Neuroscience, vol. 77, no. 2, pp. 563–573, 1997. View at Google Scholar · View at Scopus