Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 358717, 13 pages
http://dx.doi.org/10.1093/ecam/nep107
Original Article

Ganoderma lucidum Polysaccharides Induce Macrophage-Like Differentiation in Human Leukemia THP-1 Cells via Caspase and p53 Activation

1Institute of Molecular and Cellular Biology, Department of Life Science, Graduate Institute of Biomedical Electronics and Bioinformatics, Center for Systems Biology and Bioinformatics, Institute of Biochemical Sciences, National Taiwan University, Taiwan
2Institute of Biomedical Informatics and Center for Systems and Synthetic Biology, National Yang-Ming University, Taiwan
3Institute of Biological Chemistry and the Genomics Research Center, Academia Sinica, Taipei, Taiwan
4Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA

Received 22 February 2009; Accepted 26 June 2009

Copyright © 2011 Jia-Wei Hsu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. M. Yuen and M. D. I. Gohel, “Anticancer effects of Ganoderma lucidum: a review of scientific evidence,” Nutrition and Cancer, vol. 53, no. 1, pp. 11–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Boh, M. Berovic, J. Zhang, and L. Zhi-Bin, “Ganoderma lucidum and its pharmaceutically active compounds,” Biotechnology Annual Review, vol. 13, pp. 265–301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. R. R. M. Paterson, “Ganoderma—a therapeutic fungal biofactory,” Phytochemistry, vol. 67, no. 18, pp. 1985–2001, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. H.-Y. Hsu, K.-F. Hua, C.-C. Lin, C.-H. Lin, J. Hsu, and C.-H. Wong, “Extract of Reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways,” Journal of Immunology, vol. 173, no. 10, pp. 5989–5999, 2004. View at Google Scholar · View at Scopus
  5. K.-I. Lin, Y.-Y. Kao, H.-K. Kuo et al., “Reishi polysaccharides induce immunoglobulin production through the TLR4/TLR2-mediated induction of transcription factor Blimp-1,” Journal of Biological Chemistry, vol. 281, no. 34, pp. 24111–24123, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. K.-C. Cheng, H.-C. Huang, J.-H. Chen et al., “Ganoderma lucidum polysaccharides in human monocytic leukemia cells: from gene expression to network construction,” BMC Genomics, vol. 8, article 411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. D. G. Tenen, “Disruption of differentiation in human cancer: AML shows the way,” Nature Reviews Cancer, vol. 3, no. 2, pp. 89–101, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Löwenberg, J. R. Downing, and A. Burnett, “Acute myeloid leukemia,” The New England Journal of Medicine, vol. 341, no. 14, pp. 1051–1062, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Sell, “Leukemia: stem cells, maturation arrest, and differentiation therapy,” Stem Cell Reviews, vol. 1, no. 3, pp. 197–206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Konopleva and M. Andreeff, “Targeting the leukemia microenvironment,” Current Drug Targets, vol. 8, no. 6, pp. 685–701, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Chen, Z.-Y. Wang, and S.-J. Chen, “Acute promyelocytic leukemia: cellular and molecular basis of differentiation and apoptosis,” Pharmacology and Therapeutics, vol. 76, no. 1–3, pp. 141–149, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. G.-B. Zhou, J. Zhang, Z.-Y. Wang, S.-J. Chen, and Z. Chen, “Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy,” Philosophical Transactions of the Royal Society B, vol. 362, no. 1482, pp. 959–971, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Fang, S. J. Chen, J. H. Tong, Z. G. Wang, G. Q. Chen, and Z. Chen, “Treatment of acute promyelocytic leukemia with ATRA and As2O3: a model of molecular target-Based cancer therapy,” Cancer biology & therapy, vol. 1, no. 6, pp. 614–620, 2002. View at Google Scholar · View at Scopus
  14. M. B. Miranda, R. Duan, S. M. Thomas et al., “Gefitinib potentiates myeloid cell differentiation by ATRA,” Leukemia, vol. 22, no. 8, pp. 1624–1627, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Kaul and N. Varma, “Molecular mechanism involved in TPA-induced myelopoietic programming,” Leukemia Research, vol. 23, no. 3, pp. 235–237, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Y. James, M. A. Williams, A. C. Newland, and K. W. Colston, “Leukemia cell differentiation: cellular and molecular interactions of retinoids and vitamin D,” General Pharmacology, vol. 32, no. 1, pp. 143–154, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Matkovic, F. Brugnoli, V. Bertagnolo, H. Banfic, and D. Visnjic, “The role of the nuclear Akt activation and Akt inhibitors in all-trans-retinoic acid-differentiated HL-60 cells,” Leukemia, vol. 20, no. 6, pp. 941–951, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. H.-S. Chen, Y.-F. Tsai, S. Lin et al., “Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides,” Bioorganic and Medicinal Chemistry, vol. 12, no. 21, pp. 5595–5601, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Hirano, K. Ishihara, and M. Hibi, “Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors,” Oncogene, vol. 19, no. 21, pp. 2548–2556, 2000. View at Google Scholar · View at Scopus
  20. A. Denk, T. Wirth, and B. Baumann, “NF-κB transcription factors: critical regulators of hematopoiesis and neuronal survival,” Cytokine and Growth Factor Reviews, vol. 11, no. 4, pp. 303–320, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. A. T. Bender, C. L. Ostenson, D. Giordano, and J. A. Beavo, “Differentiation of human monocytes in vitro with granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression,” Cellular Signalling, vol. 16, no. 3, pp. 365–374, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Lehtonen, H. Ahlfors, V. Veckman, M. Miettinen, R. Lahesmaa, and I. Julkunen, “Gene expression profiling during differentiation of human monocytes to macrophages or dendritic cells,” Journal of Leukocyte Biology, vol. 82, no. 3, pp. 710–720, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Ding, T. Jin, Z. Wang, and Y. Chen, “Catalase potentiates retinoic acid-induced THP-1 monocyte differentiation into macrophage through inhibition of peroxisome proliferator-activated receptor gamma,” Journal of Leukocyte Biology, vol. 81, pp. 1568–1576, 2007. View at Google Scholar
  24. A. Dimberg and F. Öberg, “Retinoic acid-induced cell cycle arrest of human of myeloid cell lines,” Leukemia and Lymphoma, vol. 44, no. 10, pp. 1641–1650, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. K. M. Lin and G. E. Austin, “Functional activity of three distinct myeloperoxidase (MPO) promoters in human myeloid cells,” Leukemia, vol. 16, no. 6, pp. 1143–1153, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. J. R. Worley, M. D. Baugh, D. A. Hughes et al., “Metalloproteinase expression in PMA-stimulated THP-1 cells: effects of peroxisome proliferator-activated receptor-γ (PPARγ) agonists and 9-cis-retinoic acid,” Journal of Biological Chemistry, vol. 278, no. 51, pp. 51340–51346, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. O. Sordet, C. Rébé, S. Plenchette et al., “Specific involvement of caspases in the differentiation of monocytes into macrophages,” Blood, vol. 100, no. 13, pp. 4446–4453, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Lamkanfi, N. Festjens, W. Declercq, T. V. Berghe, and P. Vandenabeele, “Caspases in cell survival, proliferation and differentiation,” Cell Death and Differentiation, vol. 14, no. 1, pp. 44–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Matas, M. Milyavsky, I. Shats, L. Nissim, N. Goldfinger, and V. Rotter, “p53 is a regulator of macrophage differentiation,” Cell Death and Differentiation, vol. 11, no. 4, pp. 458–467, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Stiewe, “The p53 family in differentiation and tumorigenesis,” Nature Reviews Cancer, vol. 7, no. 3, pp. 165–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Asada, T. Yamada, K. Fukumuro, and S. Mizutani, “p21Cip1/WAF1 is important for differentiation and survival of U937 cells,” Leukemia, vol. 12, no. 12, pp. 1944–1950, 1998. View at Google Scholar · View at Scopus
  32. P. Secchiero, A. Gonelli, P. Mirandola et al., “Tumor necrosis factor—related apoptosis-inducing ligand induces monocytic maturation of leukemic and normal myeloid precursors through a caspase-dependent pathway,” Blood, vol. 100, no. 7, pp. 2421–2429, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. S. J. Martin, J. G. Bradley, and T. G. Cotter, “HL-60 cells induced to differentiate towards neutrophils subsequently die via apoptosis,” Clinical and Experimental Immunology, vol. 79, no. 3, pp. 448–453, 1990. View at Google Scholar · View at Scopus