Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011 (2011), Article ID 395458, 12 pages
http://dx.doi.org/10.1093/ecam/nep131
Original Article

Schwann Cell Migration Induced by Earthworm Extract via Activation of PAs and MMP2/9 Mediated through ERK1/2 and p38

1Graduate Institute of Chinese Medical Science, China Medical University, Taiwan
2School of Chinese Medicine, China Medical University, Taiwan
3Emergency Department, China Medical University Hospital, Taiwan
4Department of Neurosurgery, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
5Department of Healthcare Administration, Asia University, Taiwan
6Department of Pediatrics, Medical Research and Medical Genetics, China Medical University, Taiwan
7Department of Biological Science and Technology, China Medical University, Taiwan
8School of Post-Baccalaureate Chinese Medicine, China Medical University, Taiwan
9Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
10Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan

Received 10 February 2009; Accepted 6 August 2009

Copyright © 2011 Yung-Ming Chang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. P. Bunge, “Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration,” Current Opinion in Neurobiology, vol. 3, no. 5, pp. 805–809, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. J. W. Fawcett and R. J. Keynes, “Peripheral nerve regeneration,” Annual Review of Neuroscience, vol. 13, pp. 43–60, 1990. View at Google Scholar · View at Scopus
  3. K. Torigoe, H.-F. Tanaka, A. Takahashi, A. Awaya, and K. Hashimoto, “Basic behavior of migratory Schwann cells in peripheral nerve regeneration,” Experimental Neurology, vol. 137, no. 2, pp. 301–308, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. E. S. Anton, A. W. Sandrock Jr., and W. D. Matthew, “Merosin promotes neurite growth and Schwann cell migration in vitro and nerve regeneration in vivo: evidence using an antibody to merosin, ARM-1,” Developmental Biology, vol. 164, no. 1, pp. 133–146, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Ide, “Peripheral nerve regeneration,” Neuroscience Research, vol. 25, no. 2, pp. 101–121, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. W. D. Snider, F.-Q. Zhou, J. Zhong, and A. Markus, “Signaling the pathway to regeneration,” Neuron, vol. 35, no. 1, pp. 13–16, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Pearson, F. Robinson, T. B. Gibson et al., “Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions,” Endocrine Reviews, vol. 22, no. 2, pp. 153–183, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Meintanis, D. Thomaidou, K. R. Jessen, R. Mirsky, and R. Matsas, “The neuron-glia signal β-neuregulin promotes Schwann cell motility via the MAPK pathway,” GLIA, vol. 34, no. 1, pp. 39–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. P. P. Roux and J. Blenis, “ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions,” Microbiology and Molecular Biology Reviews, vol. 68, no. 2, pp. 320–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Ma and R. Quirion, “The ERK/MAPK pathway, as a target for the treatment of neuropathic pain,” Expert Opinion on Therapeutic Targets, vol. 9, no. 4, pp. 699–713, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Wiklund, P. A. Ekstrom, and A. Edstrom, “Mitogen-activated protein kinase inhibition reveals differences in signalling pathways activated by neurotrophin-3 and other growth-stimulating conditions of adult mouse dorsal root ganglia neurons,” Journal of Neuroscience Research, vol. 67, pp. 62–68, 2002. View at Google Scholar
  12. C. Huang, K. Jacobson, and M. D. Schaller, “MAP kinases and cell migration,” Journal of Cell Science, vol. 117, no. 20, pp. 4619–4628, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. K. B. Reddy, S. M. Nabha, and N. Atanaskova, “Role of MAP kinase in tumor progression and invasion,” Cancer and Metastasis Reviews, vol. 22, no. 4, pp. 395–403, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. L. B. Siconolfi and N. W. Seeds, “Mice lacking tPA, uPA, or plasminogen genes showed delayed functional recovery after sciatic nerve crush,” Journal of Neuroscience, vol. 21, no. 12, pp. 4348–4355, 2001. View at Google Scholar · View at Scopus
  15. G. Murphy, S. Atkinson, R. Ward, J. Gavrilovic, and J. J. Reynolds, “The role of plasminogen activators in the regulation of connective tissue metalloproteinases,” Annals of the New York Academy of Sciences, vol. 667, pp. 1–12, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. L. B. Siconolfi and N. W. Seeds, “Induction of the plasminogen activator system accompanies peripheral nerve regeneration after sciatic nerve crush,” Journal of Neuroscience, vol. 21, no. 12, pp. 4336–4347, 2001. View at Google Scholar · View at Scopus
  17. L. B. Siconolfi and N. W. Seeds, “Mice lacking tissue plasminogen activator and urokinase plasminogen activator genes show attenuated matrix metalloproteases activity after sciatic nerve crush,” Journal of Neuroscience Research, vol. 74, no. 3, pp. 430–434, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Huang, K. Jacobson, and M. D. Schaller, “MAP kinases and cell migration,” Journal of Cell Science, vol. 117, no. 20, pp. 4619–4628, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Koochekpour, O. Sartor, M. Hiraiwa et al., “Saposin C stimulates growth and invasion, activates p42/44 and SAPK/JNK signaling pathways of MAPK and upregulates uPA/uPAR expression in prostate cancer and stromal cells,” Asian Journal of Andrology, vol. 7, no. 2, pp. 147–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Hecht, U. Heider, M. Kaiser, I. von Metzler, J. Sterz, and O. Sezer, “Osteoblasts promote migration and invasion of myeloma cells through upregulation of matrix metalloproteinases, urokinase plasminogen activator, hepatocyte growth factor and activation of p38 MAPK,” British Journal of Haematology, vol. 138, no. 4, pp. 446–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. C.-C. Tsai, M.-C. Lu, Y.-S. Chen, C.-H. Wu, and C.-C. Lin, “Locally administered nerve growth factor suppresses ginsenoside Rb 1-enhanced peripheral nerve regeneration,” American Journal of Chinese Medicine, vol. 31, no. 5, pp. 665–673, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. E. L. Cooper, “Bioprospecting: a CAM frontier,” Evidence-Based Complementary and Alternative Medicine, vol. 2, no. 1, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Balamurugan, K. Parthasarathi, L. S. Ranganathan, and E. L. Cooper, “Hypothetical mode of action of earthworm extract with hepatoprotective and antioxidant properties,” Journal of Zhejiang University: Science B, vol. 9, no. 2, pp. 141–147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. L. S. Ranganathan, “Vermibiotechnologyrom soil health to human health,” Jodhpur, India, Agrobios, 2006.
  25. E. L. Cooper, “CAM, eCAM, bioprospecting: the 21st century pyramid,” Evidence-Based Complementary and Alternative Medicine, vol. 2, no. 2, pp. 125–127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. E. L. Cooper, B. Ru, and N. Weng, “Earthworms: sources of antimicrobial and anticancer molecules,” Advances in Experimental Medicine and Biology, vol. 546, pp. 359–389, 2004. View at Google Scholar · View at Scopus
  27. M. Zhang, X. Li, Y. Liu, F. Ye, and G. Qiu, “Effects of extract of Dilong (Pheretima) on the scalded skin in rats,” Journal of Traditional Chinese Medicine, vol. 26, no. 1, pp. 68–71, 2006. View at Google Scholar · View at Scopus
  28. E. L. Cooper, M. Balamurugan, K. Parthasarathi, and L. S. Ranganathan, “Earthworm paste (Lampito mauritii, Kinberg) alters inflammatory, oxidative, haematological and serum biochemical indices of inflamed rat,” European Review for Medical and Pharmacological Sciences, vol. 11, no. 2, pp. 77–90, 2007. View at Google Scholar · View at Scopus
  29. Z. X. Zhang and F. F. Wang, “Effects of crude extract of earthworm on promoting blood circulation to removing stasis,” Zhongguo Zhong Xi Yi Jie He Za Zhi, vol. 12, no. 12, pp. 741–710, 1992. View at Google Scholar · View at Scopus
  30. L. Jin, H. Jin, G. Zhang, and G. Xu, “Changes in coagulation and tissue plasminogen activator after the treatment of cerebral infarction with lumbrokinase,” Clinical Hemorheology and Microcirculation, vol. 23, no. 2-4, pp. 213–218, 2000. View at Google Scholar · View at Scopus
  31. E. L. Cooper, “Complementary and alternative medicine, when rigorous, can be science,” Evidence-Based Complementary and Alternative Medicine, vol. 1, no. 1, pp. 1–4, 2004. View at Publisher · View at Google Scholar
  32. S. Matsuba, “Complementary and alternative approaches to biomedicine,” Evidence-Based Complementary and Alternative Medicine, vol. 1, pp. 345–348, 2004. View at Google Scholar
  33. W. Hu and T. Fu, “Isolation and properties of a novel fibrinolytic enzyme from an earth worm,” Zhong Yao Cai, vol. 20, no. 2, pp. 78–81, 1997. View at Google Scholar · View at Scopus
  34. H. Mihara, M. Maruyama, and H. Sumi, “Novel thrombolytic therapy discovered from traditional oriental medicine using the earthworm,” The Southeast Asian Journal of Tropical Medicine and Public Health, vol. 23, pp. 131–140, 1992. View at Google Scholar · View at Scopus
  35. E. L. Cooper, T. M. Hrzenjak, and M. Grdiša, “Alternative sources of fibrinolytic, anticoagulative, antimicrobial and anticancer molecules,” International Journal of Immunopathology and Pharmacology, vol. 17, no. 3, pp. 237–244, 2004. View at Google Scholar · View at Scopus
  36. S. Wei, P. Zhang, Y. Dang, H. Zhang, and B. Jiang, “Primary study on effect of various components of modified formula radix hedysari on peripheral nerve regeneration,” Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, vol. 22, no. 9, pp. 1056–1059, 2008. View at Google Scholar · View at Scopus
  37. J. B. Davis and P. Stroobant, “Platelet-derived growth factors and fibroblast growth factors are mitogens for rat Schwann cells,” Journal of Cell Biology, vol. 110, no. 4, pp. 1353–1360, 1990. View at Google Scholar · View at Scopus
  38. M. R. Feneley, J. W. Fawcett, and R. J. Keynes, “The role of Schwann cells in the regeneration of peripheral nerve axons through muscle basal lamina grafts,” Experimental Neurology, vol. 114, no. 3, pp. 275–285, 1991. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Y. Zhang and X. C. Tang, “Neuroprotective effects of huperzine A: new therapeutic targets for neurodegenerative disease,” Trends in Pharmacological Sciences, vol. 27, no. 12, pp. 619–625, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Huang, K. Jacobson, and M. D. Schaller, “MAP kinases and cell migration,” Journal of Cell Science, vol. 117, no. 20, pp. 4619–4628, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Witowsky, A. Abell, N. L. Johnson, G. L. Johnson, and B. D. Cuevas, “MEKK1 is required for inducible urokinase-type plasminogen activator expression,” Journal of Biological Chemistry, vol. 278, no. 8, pp. 5941–5946, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Yu, D. Bian, C. Mahanivong, R. K. Cheng, W. Zhou, and S. Huang, “P38 mitogen-activated protein kinase regulation of endothelial cell migration depends on urokinase plasminogen activator expression,” Journal of Biological Chemistry, vol. 279, no. 48, pp. 50446–50454, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. M. García-Rocha, J. Avila, and R. Armas-Portela, “Tissue-type plasminogen activator (tPA) is the main plasminogen activator associated with isolated rat nerve growth cones,” Neuroscience Letters, vol. 180, no. 2, pp. 123–126, 1994. View at Publisher · View at Google Scholar · View at Scopus
  44. R. N. Pittman and A. J. DiBenedetto, “PC12 cells overexpressing tissue plasminogen activator regenerate neurites to a greater extent and migrate faster than control cells in complex extracellular matrix,” Journal of Neurochemistry, vol. 64, no. 2, pp. 566–575, 1995. View at Google Scholar · View at Scopus
  45. E. Ulfhammer, P. Larsson, L. Karlsson et al., “TNF-α mediated suppression of tissue type plasminogen activator expression in vascular endothelial cells is NF-κB- and p38 MAPK-dependent,” Journal of Thrombosis and Haemostasis, vol. 4, no. 8, pp. 1781–1789, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. S. M. Hayden and N. W. Seeds, “Modulated expression of plasminogen activator system components in cultured cells from dissociated mouse dorsal root ganglia,” Journal of Neuroscience, vol. 16, no. 7, pp. 2307–2317, 1996. View at Google Scholar · View at Scopus
  47. P. A. Andreasen, L. Kjøller, L. Christensen, and M. J. Duffy, “The urokinase-type plasminogen activator system in cancer metastasis: a review,” International Journal of Cancer, vol. 72, no. 1, pp. 1–22, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Hildenbrand, M. Gandhari, P. Stroebel, A. Marx, H. Allgayer, and N. Arens, “The urokinase-system—role of cell proliferation and apoptosis,” Histology and Histopathology, vol. 23, no. 1–3, pp. 227–236, 2008. View at Google Scholar · View at Scopus
  49. K. Dass, A. Ahmad, A. S. Azmi, S. H. Sarkar, and F. H. Sarkar, “Evolving role of uPA/uPAR system in human cancers,” Cancer Treatment Reviews, vol. 34, no. 2, pp. 122–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Muir, “Metalloproteinase-dependent neurite outgrowth within a synthetic extracellular matrix is induced by nerve growth factor,” Experimental Cell Research, vol. 210, no. 2, pp. 243–252, 1994. View at Publisher · View at Google Scholar · View at Scopus
  51. E. M. Muir, K. H. Adcock, D. A. Morgenstern et al., “Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes,” Molecular Brain Research, vol. 100, no. 1-2, pp. 103–117, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Nagase, “Activation mechanisms of matrix metalloproteinases,” Biological Chemistry, vol. 378, no. 3-4, pp. 151–160, 1997. View at Google Scholar · View at Scopus
  53. G. H. Ryu, S. Park, D. K. Han, Y. H. Kim, and B. Min, “Antithrombotic activity of a lumbrokinase immobilized polyurethane surface,” ASAIO Journal, vol. 39, no. 3, pp. M314–M318, 1993. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Mihara, H. Sumi, T. Yoneta et al., “A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus,” Japanese Journal of Physiology, vol. 41, no. 3, pp. 461–472, 1991. View at Google Scholar · View at Scopus
  55. H. Ji, L. Wang, H. Bi et al., “Mechanisms of lumbrokinase in protection of cerebral ischemia,” European Journal of Pharmacology, vol. 590, no. 1–3, pp. 281–289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Chen, S. Takahashi, M. Imamura et al., “Earthworm fibrinolytic enzyme: anti-tumor activity on human hepatoma cells in vitro and in vivo,” Chinese Medical Journal, vol. 120, no. 10, pp. 898–904, 2007. View at Google Scholar · View at Scopus
  57. Y. Tang, D. Liang, T. Jiang, J. Zhang, L. Gui, and W. Chang, “Crystal structure of earthworm fibrinolytic enzyme component A: revealing the structural determinants of its dual fibrinolytic activity,” Journal of Molecular Biology, vol. 321, no. 1, pp. 57–68, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Zhao, R. Pan, J. He, Y. Liu, D.-F. Li, and R.-Q. He, “Eisenia fetida protease-III-1 functions in both fibrinolysis and fibrogenesis,” Journal of Biomedicine and Biotechnology, vol. 2007, Article ID 97654, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Hrženjak, M. Popović, T. Božić, M. Grdisa, D. Kobrehel, and L. Tiška-Rudman, “Fibrinolytic and anticoagulative activities from the earthworm Eisenia foetida,” Comparative Biochemistry and Physiology Part B, vol. 119, no. 4, pp. 825–832, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Hrzenjak, M. Hrzenjak, V. Kasuba, P. Efenberger-Marinculic, and S. Levana, “A new source of biologically active compounds—earthworm tissue (Eisenia foetida, Lumbricus rubelus),” Comparative Biochemistry and Physiology Part A, vol. 102, no. 3, pp. 441–447, 1992. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Popović, T. M. Hrženjak, T. Babić, J. Kos, and M. Grdiša, “Effect of earthworm (G-90) extracton formation and lysis of clots originated from venous blood of dogs with cardiopathies and with malignant tumors,” Pathology and Oncology Research, vol. 7, no. 3, pp. 197–202, 2001. View at Google Scholar · View at Scopus
  62. M. Grdisa, M. Popovic, and T. Hrzenjak, “Glycolipoprotein extract (G-90) from earthworm Eisenia foetida exerts some antioxidative activity,” Comparative Biochemistry and Physiology Part A, vol. 128, no. 4, pp. 821–825, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Hrzenjak, D. Kobrehel, S. Levanat, M. Jurin, and T. Hrzenjak, “Mitogenicity of the earthworm's (Eisenia foetida) insulin-like proteins,” Comparative Biochemistry and Physiology Part B, vol. 104, no. 4, pp. 723–729, 1993. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Popović, T. Hrženjak, M. Grdiša, and S. Vuković, “Adhesins of immunoglobulin-like superfamily from earthworm Eisenia foetida,” General Pharmacology, vol. 30, no. 5, pp. 795–800, 1998. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Grdiša, M. Popović, and T. Hrženjak, “Stimulation of growth factor synthesis in skin wounds using tissue extract (G-90) from the earthworm Eissenia foetida,” Cell Biochemistry and Function, vol. 22, no. 6, pp. 373–378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Kolkova, V. Novitskaya, N. Pedersen, V. Berezin, and E. Bock, “Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway,” Journal of Neuroscience, vol. 20, no. 6, pp. 2238–2246, 2000. View at Google Scholar · View at Scopus
  67. S. Diestel, C. L. Hinkle, B. Schmitz, and P. F. Maness, “NCAM140 stimulates integrin-dependent cell migration by ectodomain shedding,” Journal of Neurochemistry, vol. 95, no. 6, pp. 1777–1784, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. J. G. Boyd and T. Gordon, “A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor,” European Journal of Neuroscience, vol. 15, no. 4, pp. 613–626, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Hirata, T. Masaki, K. Motoyoshi, and K. Kamakura, “Intrathecal administration of nerve growth factor delays GAP 43 expression and early phase regeneration of adult rat peripheral nerve,” Brain Research, vol. 944, no. 1-2, pp. 146–156, 2002. View at Publisher · View at Google Scholar · View at Scopus