Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 730356, 9 pages
http://dx.doi.org/10.1155/2011/730356
Research Article

Expression of Pigment Cell-Specific Genes in the Ontogenesis of the Sea Urchin Strongylocentrotus intermedius

1A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky Street 17, Vladivostok 690041, Russia
2Institute of Biology and Soil Sciences, FEB RAS, Vladivostok 690022, Russia
3Far Eastern Federal University, Vladivostok 690950, Russia

Received 12 January 2011; Accepted 16 May 2011

Copyright © 2011 Natalya V. Ageenko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Fox and B. T. Scheer, “Comparative studies of the pigments some Pacific Coast echinoderms,” Biological Bulletin, vol. 80, pp. 441–455, 1941. View at Google Scholar
  2. M. Griffiths, “A study of the synthesis of naphthaquinone pigments by the larvae of two species of sea urchins and their reciprocal hybrids,” Developmental Biology, vol. 11, no. 3, pp. 433–447, 1965. View at Google Scholar · View at Scopus
  3. S. A. Fedoreyev, N. P. Mischenko, E. A. Kol'tsova et al., “Drug, Histochrome, from the sea urchin,” in Abstracts of 5th International Marine Biotechnology Conference, p. 53, Townsville, Australia, 2000.
  4. N. P. Mishchenko, S. A. Fedoreev, and V. L. Bagirova, “Histochrome: a new original domestic drug,” Pharmaceutical Chemistry Journal, vol. 37, no. 1, pp. 48–52, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. E. A. Koltsova, L. V. Boguslavskaya, and O. V. Maximov, “On the functions of quinonoid pigment production in sea urchin embryos,” International Journal of Invertebrate Reproduction, vol. 4, pp. 17–28, 1981. View at Google Scholar
  6. E. L. Cooper, “Drug discovery, CAM and natural products,” Evidence-Based Complementary and Alternative Medicine, vol. 1, no. 3, pp. 215–217, 2004. View at Google Scholar
  7. K. Benkendorff, C. M. McIver, and C. A. Abbott, “Bioactivity of the Murex homeopathic remedy and of extracts from an Australian muricid mollusc against human cancer cells,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 879585, 2011. View at Publisher · View at Google Scholar
  8. M. Service and A. C. Wardlaw, “Echinochrome-A as a bactericidal substance in the coelomic fluid of Echinus esculentus (L.),” Comparative Biochemistry and Physiology Part B, vol. 79, no. 2, pp. 161–165, 1984. View at Google Scholar · View at Scopus
  9. K. Nishibori, “Studies on pigments of marine animals. III. Echinochrome from the Spine of sand-dollar Echinorachnius mirabilis,” Bulletin of Society of Scientific Fishing, vol. 22, no. 11, pp. 708–711, 1957. View at Google Scholar
  10. G. Britton, The Biochemistry of Natural Pigments, Cambridge University Press, London, UK, 1983.
  11. S. W. Ruffins and C. A. Ettensohn, “A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo,” Developmental Biology, vol. 160, no. 1, pp. 285–288, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. R. R. Chaffee and D. Mazia, “Echinochrome synthesis in hybrid sea urchin embryos,” Developmental Biology, vol. 7, pp. 502–512, 1963. View at Google Scholar · View at Scopus
  13. E. Ryberg and B. Lundgren, “Some aspects on pigment cell distribution and function in the developing echinopluteus of Psammechinus miliaris,” Development Growth and Differentiation, vol. 21, no. 2, pp. 129–140, 1979. View at Google Scholar · View at Scopus
  14. T. Matsuno and M. Tsushima, “Carotenoids in sea urchins,” in Edible sea Urchins: Biology and Ecology, J. M. Lawrence, Ed., Elsevier Science, Amsterdam, The Netherlands, 2001. View at Google Scholar
  15. L. C. Smith, J. P. Rast, V. Brockton et al., “The sea urchin immune system,” Invertebrate Survival Journal, vol. 3, pp. 25–39, 2006. View at Google Scholar
  16. A. W. Gibson and R. D. Burke, “The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus,” Developmental Biology, vol. 107, no. 2, pp. 414–419, 1985. View at Google Scholar · View at Scopus
  17. T. Hibino, M. Loza-Coll, C. Messier et al., “The immune gene repertoire encoded in the purple sea urchin genome,” Developmental Biology, vol. 300, no. 1, pp. 349–365, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Asashima, “On the tyrosinehydroxylase and tyrosinase activities in developing sea urchin embryos with special reference to the biosynthesis of echinochrome,” Journal of the Faculty of Science, the University of Tokyo. Section IV, vol. 12, pp. 279–284, 1971. View at Google Scholar
  19. C. H. Yuh, H. Bolouri, and E. H. Davidson, “Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene,” Science, vol. 279, no. 5358, pp. 1896–1902, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. E. H. Davidson, The Regulatory Genome: Gene Regulatory Networks in Development and Evolution, Academic Press, San Diego, Calif, USA, 2006.
  21. C. Calestani, J. P. Rast, and E. H. Davidson, “Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening,” Development, vol. 130, no. 19, pp. 4587–4596, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Giulietti, L. Overbergh, D. Valckx, B. Decallonne, R. Bouillon, and C. Mathieu, “An overview of real-time quantitative PCR: applications to quantify cytokine gene expression,” Methods, vol. 25, no. 4, pp. 386–401, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  24. T. A. Castoe, T. Stephens, B. P. Noonan, and C. Calestani, “A novel group of type I polyketide synthases (PKS) in animals and the complex phylogenomics of PKSs,” Gene, vol. 392, no. 1-2, pp. 47–58, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Kominami, “Establishment of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus,” Development Growth and Differentiation, vol. 42, no. 1, pp. 41–51, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. B. T. Livingston and F. H. Wilt, “Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 10, pp. 3669–3673, 1989. View at Google Scholar · View at Scopus
  27. B. T. Livingston and F. H. Wilt, “Range and stability of cell fate determination in isolated sea urchin blastomeres,” Development, vol. 108, no. 3, pp. 403–410, 1990. View at Google Scholar · View at Scopus
  28. N. A. Odintsova, K. V. Kiselev, V. P. Bulgakov, E. A. Koltsova, and K. V. Yakovlev, “Influence of the activator of transcription gal4 on growth and development of embryos and embryonic cells in primary cultures of sand dollar,” Russian Journal of Developmental Biology, vol. 34, no. 4, pp. 217–222, 2003. View at Google Scholar
  29. T. Kominami and H. Takata, “Process of pigment cell specification in the sand dollar, Scaphechinus mirabilis,” Development Growth and Differentiation, vol. 44, no. 2, pp. 113–125, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. V. P. Bulgakov, N. A. Odintsova, S. V. Plotnikov, K. V. Kiselev, E. V. Zacharov, and Y. N. Zhuravlev, “Gal4-gene-dependent alterations of embryo development and cell growth in primary culture of sea urchins,” Marine Biotechnology, vol. 4, no. 5, pp. 480–486, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Walker, S. A. Böttger, J. Mulkern, E. Jerszyk, M. Litvaitis, and M. Lesser, “Mass culture and characterization of tumor cells from a naturally occurring invertebrate cancer model: applications for human and animal disease and environmental health,” Biological Bulletin, vol. 216, no. 1, pp. 23–39, 2009. View at Google Scholar · View at Scopus