Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 751452, 6 pages
http://dx.doi.org/10.1155/2011/751452
Research Article

Biosynthesis and Immobilization of Biofunctional Allophycocyanin

1Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received 14 January 2011; Revised 27 April 2011; Accepted 20 June 2011

Copyright © 2011 Yingjie Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. MacColl, “Cyanobacterial phycobilisomes,” Journal of Structural Biology, vol. 124, no. 2-3, pp. 311–334, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. W. A. Samsonoff and R. MacColl, “Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat,” Archives of Microbiology, vol. 176, no. 6, pp. 400–405, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. L. N. Liu, X. L. Chen, Y. Z. Zhang, and B. C. Zhou, “Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview,” Biochimica et Biophysica Acta, vol. 1708, no. 2, pp. 133–142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Tandeau de Marsac, “Phycobiliproteins and phycobilisomes: the early observations,” Photosynthesis Research, vol. 76, no. 1-3, pp. 197–205, 2003. View at Google Scholar · View at Scopus
  5. A. McGregor, M. Klartag, L. David, and N. Adir, “Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket,” Journal of Molecular Biology, vol. 384, no. 2, pp. 406–421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. MacColl, “Allophycocyanin and energy transfer,” Biochimica et Biophysica Acta, vol. 1657, no. 2-3, pp. 73–81, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. R. Shih, K. N. Tsai, Y. S. Li, C. C. Chueh, and E. C. Chan, “Inhibition of enterovirus 71-induced apoptosis by allophycocyanin isolated from a blue-green alga Spirulina platensis,” Journal of Medical Virology, vol. 70, no. 1, pp. 119–125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. E. A. Lissi, M. Pizarro, A. Aspee, and C. Romay, “Kinetics of phycocyanine bilin groups destruction by peroxyl radicals,” Free Radical Biology and Medicine, vol. 28, no. 7, pp. 1051–1055, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. V. B. Bhat and K. M. Madyastha, “Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: protection against oxidative damage to DNA,” Biochemical and Biophysical Research Communications, vol. 285, no. 2, pp. 262–266, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Ge, Z. Tang, F. Zhao, Y. Ren, Y. Yang, and S. Qin, “Scale-up of fermentation and purification of recombinant allophycocyanin over-expressed in Escherichia coli,” Process Biochemistry, vol. 40, no. 10, pp. 3190–3195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Y. Guan, W. J. Zhang, X. W. Zhang et al., “A potent anti-oxidant property: fluorescent recombinant α-phycocyanin of Spirulina,” Journal of Applied Microbiology, vol. 106, no. 4, pp. 1093–1100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. I. C. Hu, T. R. Lee, H. F. Lin, C. C. Chiueh, and P. C. Lyu, “Biosynthesis of fluorescent allophycocyanin α-subunits by autocatalytic bilin attachment,” Biochemistry, vol. 45, no. 23, pp. 7092–7099, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Zhang, X. Guan, Y. Yang et al., “Biosynthesis of fluorescent allophycocyanin α-subunits by autocatalysis in Escherichia coli,” Biotechnology and Applied Biochemistry, vol. 52, no. 2, pp. 135–140, 2009. View at Publisher · View at Google Scholar
  14. T. G. M. Schmidt, J. Koepke, R. Frank, and A. Skerra, “Molecular interaction between the strep-lag affinity peptide and its cognate target, streptavidin,” Journal of Molecular Biology, vol. 255, no. 5, pp. 753–766, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. A. D. Keefe, D. S. Wilson, B. Seelig, and J. W. Szostak, “One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-tag,” Protein Expression and Purification, vol. 23, no. 3, pp. 440–446, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. A. Cai, J. T. Murphy, G. J. Wedemayer, and A. N. Glazer, “Recombinant phycobiliprotiens: recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains,” Analytical Biochemistry, vol. 290, no. 2, pp. 186–204, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Janknecht, G. de Martynoff, J. Lou, R. A. Hipskind, A. Nordheim, and H. G. Stunnenberg, “Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 20, pp. 8972–8976, 1991. View at Google Scholar · View at Scopus
  18. K. L. M. C. Franken, H. S. Hiemstra, K. E. van Meijgaarden et al., “Purification of His-tagged proteins by immobilized chelate affinity chromatography: the benefits from the use of organic solvent,” Protein Expression and Purification, vol. 18, no. 1, pp. 95–99, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Ye, S. Jin, M. M. Ataai, J. S. Schultz, and J. Ibeh, “Tagging retrovirus vectors with a metal binding peptide and one-step purification by immobilized metal affinity chromatography,” Journal of Virology, vol. 78, no. 18, pp. 9820–9827, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. E. K. M. Ueda, P. W. Gout, and L. Morganti, “Current and prospective applications of metal ion-protein binding,” Journal of Chromatography A, vol. 988, no. 1, pp. 1–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Kröger, M. Liley, W. Schiweck, A. Skerra, and H. Vogel, “Immobilization of histidine-tagged proteins on gold surfaces using chelator thioalkanes,” Biosensors and Bioelectronics, vol. 14, no. 2, pp. 155–161, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. C. H. Ho, L. Limberis, K. D. Caldwell, and R. J. Stewart, “A metal-chelating pluronic for immobilization of histidine-tagged proteins at interfaces: immobilization of firefly luciferase on polystyrene beads,” Langmuir, vol. 14, no. 14, pp. 3889–3894, 1998. View at Google Scholar · View at Scopus
  23. C. Mateo, G. Fernández-Lorente, E. Cortés, J. L. Garcia, R. Fernández-Lafuente, and J. M. Guisan, “One-step purification, covalent immobilization, and additional stabilization of poly-his-tagged proteins using novel heterofunctional chelate-epoxy supports,” Biotechnology and Bioengineering, vol. 76, no. 3, pp. 269–276, 2001. View at Publisher · View at Google Scholar
  24. S. Paul, S. S. Bhattacharyya, N. Boujedaini, and A. R. Khuda-Bukhsh, “Anticancer potentials of root extract of Polygala senega and its PLGA nanoparticles-encapsulated form,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 517204, 13 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra, and J. Santamaría, “Magnetic nanoparticles for drug delivery,” Nano Today, vol. 2, no. 3, pp. 22–32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Liao, Y. Cheng, and Q. Li, “Preparation of nitrilotriacetic acid/Co2+-linked, silica/boron-coated magnetite nanoparticles for purification of 6 × histidine-tagged proteins,” Journal of Chromatography A, vol. 1143, no. 1-2, pp. 65–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Ramesh, Y. Koltypin, R. Prozorov, and A. Gedanken, “Sonochemical deposition and characterization of nanophasic amorphous nickel on silica microspheres,” Chemistry of Materials, vol. 9, no. 2, pp. 546–551, 1997. View at Google Scholar · View at Scopus
  28. M. Bele, G. Hribar, S. Čampelj et al., “Zinc-decorated silica-coated magnetic nanoparticles for protein binding and controlled release,” Journal of Chromatography B, vol. 867, no. 1, pp. 160–164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Ma, Y. Guan, and H. Liu, “Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption,” Journal of Magnetism and Magnetic Materials, vol. 301, no. 2, pp. 469–477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. X. He, H. Huo, K. Wang, W. Tan, P. Gong, and J. Ge, “Plasmid DNA isolation using amino-silica coated magnetic nanoparticles (ASMNPs),” Talanta, vol. 73, no. 4, pp. 764–769, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. X. He, Y. Chen, K. Wang, P. Wu, P. Gong, and H. Huo, “Selective separation of proteins with pH-dependent magnetic nanoadsorbents,” Nanotechnology, vol. 18, no. 36, Article ID 365604, 2007. View at Publisher · View at Google Scholar · View at Scopus