Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 810207, 6 pages
http://dx.doi.org/10.1093/ecam/nen040
Original Article

Antidiabetic Indian Plants: A Good Source of Potent Amylase Inhibitors

1Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India
2Department of Zoology, University of Pune, Pune 411 007, India

Received 21 April 2007; Accepted 11 April 2008

Copyright © 2011 Menakshi Bhat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Diabetes is known as a multifactorial disease. The treatment of diabetes (Type II) is complicated due to the inherent patho-physiological factors related to this disease. One of the complications of diabetes is post-prandial hyperglycemia (PPHG). Glucosidase inhibitors, particularly α-amylase inhibitors are a class of compounds that helps in managing PPHG. Six ethno-botanically known plants having antidiabetic property namely, Azadirachta indica Adr. Juss.; Murraya koenigii (L.) Sprengel; Ocimum tenuflorum (L.) (syn: Sanctum); Syzygium cumini (L.) Skeels (syn: Eugenia jambolana); Linum usitatissimum (L.) and Bougainvillea spectabilis were tested for their ability to inhibit glucosidase activity. The chloroform, methanol and aqueous extracts were prepared sequentially from either leaves or seeds of these plants. It was observed that the chloroform extract of O. tenuflorum; B. spectabilis; M. koenigii and S. cumini have significant α-amylase inhibitory property. Plants extracts were further tested against murine pancreatic, liver and small intestinal crude enzyme preparations for glucosidase inhibitory activity. The three extracts of O. tenuflorum and chloroform extract of M. koenigi showed good inhibition of murine pancreatic and intestinal glucosidases as compared with acarbose, a known glucosidase inhibitor.