Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011, Article ID 824104, 7 pages
http://dx.doi.org/10.1155/2011/824104
Research Article

Bacillus amyloliquefaciens G1: A Potential Antagonistic Bacterium against Eel-Pathogenic Aeromonas hydrophila

1Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of Ministry of Education, Aquatic Pathogen Collection Center of Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
2Education Department, Shanghai Normal University, Shanghai 200235, China
3Technology Department, Shanxi Veterinary Drug and Feed Engineering Technology Research Center, Yuncheng 044000, China

Received 24 December 2010; Accepted 16 May 2011

Copyright © 2011 Haipeng Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. C. Lee, Y. H. Chen, and I. C. Liao, “The competitiveness of the eel aquaculture in Taiwan, Japan, and China,” Aquaculture, vol. 221, no. 1–4, pp. 115–124, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. B. S. Dezfuli, C. Szekely, G. Giovinazzo, K. Hills, and L. Giari, “Inflammatory response to parasitic helminths in the digestive tract of Anguilla anguilla (L.),” Aquaculture, vol. 296, no. 1-2, pp. 1–6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Daskalov, “The importance of Aeromonas hydrophila in food safety,” Food Control, vol. 17, no. 6, pp. 474–483, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. H. P. Fan, “New diseases and control techniques in the eel farming,” Scientific Fish Farming, vol. 7, pp. 49–50, 2007. View at Google Scholar
  5. R. Harikrishnan, C. Balasundaram, and M. Heo, “Effect of probiotics enriched diet on Paralichthys olivaceus infected with lymphocystis disease virus (LCDV),” Fish & Shellfish Immunology, vol. 29, pp. 868–874, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. A. Al-Fatimi, W. D. Jülich, R. Jansen, and U. Lindequist, “Bioactive components of the traditionally used mushroom Podaxis pistillaris,” Evidence-Based Complementary and Alternative Medicine, vol. 3, no. 1, pp. 87–92, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. L. Balcázar, I. Blas, I. R. Ruiz-Zarzuela, D. Cunningham, D. Vendrell, and J. L. Múzquiz, “The role of probiotics in aquaculture,” Veterinary Microbiology, vol. 114, no. 3-4, pp. 173–186, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Das, L. R. Ward, and C. Burke, “Prospects of using marine actinobacteria as probiotics in aquaculture,” Applied Microbiology and Biotechnology, vol. 81, no. 3, pp. 419–429, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Sugita, Y. Hirose, N. Matsuo, and Y. Deguchi, “Production of the antibacterial substance by Bacillus sp. strain NM 12, an intestinal bacterium of Japanese coastal fish,” Aquaculture, vol. 165, no. 3-4, pp. 269–280, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Sun, H. Yang, R. Ma, and W. Lin, “Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper epinephelus coioides,” Fish and Shellfish Immunology, vol. 29, pp. 803–809, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. B. K. Das, S. K. Samal, B. R. Samantaray, S. Sethi, P. Pattnaik, and B. K. Mishra, “Antagonistic activity of cellular components of Pseudomonas species against Aeromonas hydrophila,” Aquaculture, vol. 253, pp. 17–24, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Gong, T. L. Lin, C. A. Xu, X. P. Zhang, and X. L. Yang, “Purification of aerolysin of Aeromonas hydrophila by affinity chromatography and analysis of its hemolytic activity,” Chinese Journal of Zoonoses, vol. 25, no. 5, pp. 422–426, 2009. View at Google Scholar
  13. K. K. Vijayan, I. S. Bright Singh, N. S. Jayaprakash et al., “A brackishwater isolate of pseudomonas PS-102, a potential antagonistic bacterium against pathogenic vibrios in penaeid and non-penaeid rearing systems,” Aquaculture, vol. 251, no. 2–4, pp. 192–200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. G. J. Nduhiu, J. N. Ombui, and D. W. Nduati, “Genetic characterisation of food borne Bacillus cereus strains from milk, cheese and rice by multiplex PCR assay,” International Journal of Integrative Biology, vol. 2, pp. 82–86, 2009. View at Google Scholar · View at Scopus
  15. G. N. Bordoloi, B. Kumari, A. Guha et al., “Isolation and structure elucidation of a new antifungal and antibacterial antibiotics produced by Streptomyces sp. 201,” Bioscience, Biotechnology, and Biochemistry, vol. 65, no. 8, pp. 1856–1858, 2001. View at Publisher · View at Google Scholar
  16. N. K. Lee, I. C. Yeo, J. W. Park, B. S. Kang, and Y. T. Hahm, “Isolation and characterization of a novel analyte from Bacillus subtilis SC-8 antagonistic to Bacillus cereus,” Journal of Bioscience and Bioengineering, vol. 110, no. 3, pp. 298–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. R. Mittal, G. Lalornde, and D. Leblarc, “Aeromonas hydrophila in rainbow trout: relation between virulence and surface characterisitics,” Canadian Journal of Microbiology, vol. 26, pp. 1501–1503, 1980. View at Google Scholar
  18. E. Schadich and A. L. J. Cole, “Pathogenicity of Aeromonas hydrophila, Klebsiella pneumoniae, and Proteus mirabilis to brown tree frogs (Litoria ewingii),” Comparative Medicine, vol. 60, no. 2, pp. 114–117, 2010. View at Google Scholar · View at Scopus
  19. D. Bucke, “Histology,” in Methods for the Microbiological Examination of Fish and Shellfish, B. Austin and D. A . Austin, Eds., pp. 69–97, John Wiley & Sons, New York, NY, USA, 1989. View at Google Scholar
  20. M. J. Lategan, F. R. Torpy, and L. F. Gibson, “Control of saprolegniosis in the eel Anguilla australis Richardson, by Aeromonas media strain A199,” Aquaculture, vol. 240, no. 1–4, pp. 19–27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. X. H. Chen, R. Scholz, M. Borriss et al., “Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease,” Journal of Biotechnology, vol. 140, no. 1-2, pp. 38–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Q. Hu, X. S. Li, and H. He, “Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of capsicum bacterial wilt,” Biological Control, vol. 54, no. 3, pp. 359–365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Sansawat and M. Thirabunyanon, “Anti-Aaeromonas hydrophila activity and characterisation of novel probiotic strains of Bacillus subtilis isolated from the gastrointestinal tract of giant freshwater prawns,” Maejo International Journal of Science and Technology, vol. 3, no. 1, pp. 77–87, 2009. View at Google Scholar · View at Scopus
  24. L. Verschuere, G. Rombaut, P. Sorgeloos, and W. Verstraete, “Probiotic bacteria as biological control agents in aquaculture,” Microbiology and Molecular Biology Reviews, vol. 64, no. 4, pp. 655–671, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. S. M. Cutting, “Bacillus probiotics,” Food Microbiology, vol. 28, no. 2, pp. 214–220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Abdel-Tawwab, A. M. Abdel-Rahman, and N. E. M. Ismael, “Evaluation of commercial live bakers'yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila,” Aquaculture, vol. 280, pp. 185–189, 2008. View at Publisher · View at Google Scholar · View at Scopus