About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2011 (2011), Article ID 932430, 10 pages
http://dx.doi.org/10.1093/ecam/nep169
Original Article

Diaphragmatic Breathing Reduces Exercise-Induced Oxidative Stress

Department of Experimental Medicine and Public Health, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Macerata, Italy

Received 31 March 2009; Accepted 2 October 2009

Copyright © 2011 Daniele Martarelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Diaphragmatic breathing is relaxing and therapeutic, reduces stress, and is a fundamental procedure of Pranayama Yoga, Zen, transcendental meditation and other meditation practices. Analysis of oxidative stress levels in people who meditate indicated that meditation correlates with lower oxidative stress levels, lower cortisol levels and higher melatonin levels. It is known that cortisol inhibits enzymes responsible for the antioxidant activity of cells and that melatonin is a strong antioxidant; therefore, in this study, we investigated the effects of diaphragmatic breathing on exercise-induced oxidative stress and the putative role of cortisol and melatonin hormones in this stress pathway. We monitored 16 athletes during an exhaustive training session. After the exercise, athletes were divided in two equivalent groups of eight subjects. Subjects of the studied group spent 1 h relaxing performing diaphragmatic breathing and concentrating on their breath in a quiet place. The other eight subjects, representing the control group, spent the same time sitting in an equivalent quite place. Results demonstrate that relaxation induced by diaphragmatic breathing increases the antioxidant defense status in athletes after exhaustive exercise. These effects correlate with the concomitant decrease in cortisol and the increase in melatonin. The consequence is a lower level of oxidative stress, which suggests that an appropriate diaphragmatic breathing could protect athletes from long-term adverse effects of free radicals.