Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2011 (2011), Article ID 965153, 11 pages
Research Article

Molecular Characterization and Expression of α-Globin and β-Globin Genes in the Euryhaline Flounder (Platichthys flesus)

1Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
2Laboratory of Adaptive Biology, College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
3Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK

Received 14 January 2011; Revised 31 March 2011; Accepted 28 June 2011

Copyright © 2011 Weiqun Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In order to understand the possible role of globin genes in fish salinity adaptation, we report the molecular characterization and expression of all four subunits of haemoglobin, and their response to salinity challenge in flounder. The entire open reading frames of α1-globin and α2-globin genes were 432 and 435 bp long, respectively, whereas the β1-globin and β2-globin genes were both 447 bp. Although the head kidney (pronephros) is the predicted major site of haematopoiesis, real-time PCR revealed that expression of α-globin and β-globin in kidney (mesonephros) was 1.5 times higher than in head kidney. Notably, the α1-globin and β1-globin mRNA expression was higher than α2-globin and β2-globin in kidney. Expression levels of all four globin subunits were higher in freshwater- (FW-) than in seawater- (SW-)adapted fish kidney. If globins do play a role in salinity adaptation, this is likely to be more important in combating the hemodilution faced by fish in FW than the dehydration and salt loading which occur in SW.