Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 132829, 9 pages
http://dx.doi.org/10.1155/2012/132829
Research Article

Aβ Damages Learning and Memory in Alzheimer’s Disease Rats with Kidney-Yang Deficiency

1Neuroscience Program, Shandong University of Traditional Chinese Medicine, Changqing University Park, Jinan 250355, China
2Qingdao Haici Medical Group, 4 Renmin Road, Qingdao 266033, China
3Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, 16 Nanxiaojie, Dongzhimeinei, Beijing 100700, China
4Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306, USA

Received 9 January 2012; Accepted 18 February 2012

Academic Editor: Shi-Bing Su

Copyright © 2012 Dongmei Qi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. Tanzi, “The synaptic Aβ hypothesis of Alzheimer disease,” Nature Neuroscience, vol. 8, no. 8, pp. 977–979, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Takasugi, T. Tomita, I. Hayashi et al., “The role of presenilin cofactors in the γ-secratase complex,” Nature, vol. 422, no. 6930, pp. 438–441, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. S. S. Sisodia and P. H. St George-Hyslop, “γ-secretase, Notch, Aβ and Alzheimer's disease: where do the presenilins fit in?” Nature Reviews Neuroscience, vol. 3, no. 4, pp. 281–290, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. R. E. Tanzi and L. Bertram, “Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective,” Cell, vol. 120, no. 4, pp. 545–555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Iwatsubo, A. Odaka, N. Suzuki, H. Mizusawa, N. Nukina, and Y. Ihara, “Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ42(43),” Neuron, vol. 13, no. 1, pp. 45–53, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. J. He and B. Pu, “Getting Yang from Yang is a basic treatment strategy for Alzheimer’s disease,” Liaoning Journal of Traditional Chinese Medicine, vol. 27, pp. 485–486, 2000 (Chinese). View at Google Scholar
  7. J. Chen, L. Zhou, and X. Zhang, “Effect of reinforcing bone on receptors and transmitters in Alzheimer’s disease rat models,” Modern Journal of Integrated Traditional Chinese and Western Medicine, vol. 10, pp. 1522–1524, 2001 (Chinese). View at Google Scholar
  8. J. Hu, Q. Wang, W. Liang et al., “Effect of Tonifying kidney and reinforcing intelligence decoction on somatostatin and neurons with somatostatin mRNA expression of brain in Alzheimer’s disease model,” Chinese Journal of Integrated Traditional and Western Medicine, vol. 20, pp. 533–535, 2000 (Chinese). View at Google Scholar
  9. P. Wang, J. Mei, L. Zhang et al., “Effect of Restoring consciousness and reinforcing intelligence decoction on hippocampal ultrastructure in SAM-P/10 mice,” Journal Hubei University of Chinese Medicine, vol. 3, pp. 18–19, 2001 (Chinese). View at Google Scholar
  10. H. Wang, S. Lai, J. Sun et al., “Effect of tonifying kidney and reinforcing intelligence decoction on behavior of Alzheimer’s disease rat models,” Chinese Journal of Integrated Traditional and Western Medicine, vol. 20, pp. 771–773, 2000 (Chinese). View at Google Scholar
  11. Q. Yue, S. Zhao, J. Gao et al., “Effect of Daicong decoction on brain M receptors in senile dementia rat models,” Chinese Journal of Integrated Traditional and Western Medicine, vol. 20, pp. 846–848, 2000 (Chinese). View at Google Scholar
  12. L. Zhou, X. Zhang, J. Chen et al., “Effect of tonifying kidney and reinforcing intelligence decoction on learning and memory in Alzheimer’s rat model,” Traditional Chinese Medicine Research, vol. 14, pp. 23–25, 2001 (Chinese). View at Google Scholar
  13. M. Liu and H. Liu, “ Current status of reinforcing intelligence herbs,” Chinese Journal of Integrated Traditional and Western Medicine, vol. 15, pp. 59–61, 1995 (Chinese). View at Google Scholar
  14. Y. Q. Li, B. Zhu, P. J. Rong, H. Ben, and Y. H. Li, “Neural mechanism of acupuncture-modulated gastric motility,” World Journal of Gastroenterology, vol. 13, no. 5, pp. 709–716, 2007. View at Google Scholar · View at Scopus
  15. X. Y. Gao, S. P. Zhang, B. Zhu, and H. Q. Zhang, “Investigation of specificity of auricular acupuncture points in regulation of autonomic function in anesthetized rats,” Autonomic Neuroscience, vol. 138, no. 1-2, pp. 50–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Gorecki, “Klabukhov-skvorstsov respiremeter and resting metabolic rate measurement,” in Methods for Ecological Bio-Energetic, W. Grondzinsky, Ed., IBP Handbook 24, pp. 309–313, Bllokwell Scientific, Oxford, UK, 1975. View at Google Scholar
  17. R. G. M. Morris, E. Anderson, G. S. Lynch, and M. Baudry, “Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5,” Nature, vol. 319, no. 6056, pp. 774–776, 1986. View at Google Scholar · View at Scopus
  18. H. Zhou, X. Ge, L. Z. Wang, L. Ma, and G. Pei, “Attenuation of morphine tolerance and dependence in scopolamine-treated rats,” NeuroReport, vol. 10, no. 10, pp. 2007–2010, 1999. View at Google Scholar · View at Scopus
  19. L. Pu, G. B. Bao, N. J. Xu, L. Ma, and G. Pei, “Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates,” Journal of Neuroscience, vol. 22, no. 5, pp. 1914–1921, 2002. View at Google Scholar · View at Scopus
  20. D. Qi, Y. Zhu, L. Wen, Q. Liu, and H. Qiao, “Ginsenoside Rg1 restores the impairment of learning induced by chronic morphine administration in rats,” Journal of Psychopharmacology, vol. 23, no. 1, pp. 74–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Doyle, C. Hölscher, M. J. Rowan, and R. Anwyl, “The selective neuronal NO synthase inhibitor 7-nitro-indazole blocks both long-term potentiation and depotentiation of field EPSPs in rat hippocampal CA1 in vivo,” Journal of Neuroscience, vol. 16, no. 1, pp. 418–424, 1996. View at Google Scholar · View at Scopus
  22. L. Xu, R. Anwyl, and M. J. Rowan, “Behavioural stress facilitates the induction of long-term depression in the hippocampus,” Nature, vol. 387, no. 6632, pp. 497–500, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Y. Wang and J. T. Zhang, “Effects of ginsenoside Rg1 on synaptic plasticity of freely moving rats and its mechanism of action,” Acta Pharmacologica Sinica, vol. 22, no. 7, pp. 657–662, 2001. View at Google Scholar · View at Scopus
  24. S. Yang, H. Qiao, L. Wen, W. Zhou, and Y. Zhang, “D-Serine enhances impaired long-term potentiation in CA1 subfield of hippocampal slices from aged senescence-accelerated mouse prone/8,” Neuroscience Letters, vol. 379, no. 1, pp. 7–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. H. F. Qiao, S. Yang, W. X. Zhou, and Y. X. Zhang, “NT-1, an active constituent extracted from Tiaoxin Recipe, enhances long-term potentiation of CA1 subfield in rat hippocampal slices,” Life Sciences, vol. 79, no. 1, pp. 8–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Ni, X. Zhao, G. Bao et al., “Activation of β2-adrenergic receptor stimulates γ-secretase activity and accelerates amyloid plaque formation,” Nature Medicine, vol. 12, no. 12, pp. 1390–1396, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Ramsden, A. C. Nyborg, M. P. Murphy et al., “Androgens modulate β-amyloid levels in male rat brain,” Journal of Neurochemistry, vol. 87, no. 4, pp. 1052–1055, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. R. A. Hall, A. Hansen, P. H. Andersen, and T. R. Soderling, “Surface expression of the AMPA receptor subunits GluR1, GluR2, and GluR4 in stably transfected baby hamster kidney cells,” Journal of Neurochemistry, vol. 68, no. 2, pp. 625–630, 1997. View at Google Scholar · View at Scopus
  29. G. Broutman and M. Baudry, “Involvement of the secretory pathway for AMPA receptors in NMDA-induced potentiation in hippocampus,” Journal of Neuroscience, vol. 21, no. 1, pp. 27–34, 2001. View at Google Scholar · View at Scopus
  30. W. Ji and I. Ha, “Drug development for Alzheimer's disease: recent progress,” Experimental Neurobiology, vol. 19, pp. 120–131, 2010. View at Google Scholar
  31. A. M. Hall and E. D. Roberson, “Mouse models of Alzheimer's disease,” Brain Research Bulletin. In press.
  32. P. Kurup, Y. Zhang, J. Xu et al., “Aβ-mediated NMDA receptor endocytosis in alzheimer's disease involves ubiquitination of the tyrosine phosphatase STEP61,” Journal of Neuroscience, vol. 30, no. 17, pp. 5948–5957, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. T. V. P. Bliss and G. L. Collingridge, “A synaptic model of memory: long-term potentiation in the hippocampus,” Nature, vol. 361, no. 6407, pp. 31–39, 1993. View at Publisher · View at Google Scholar · View at Scopus
  34. T. V. Bliss, G. L. Collingridge, and R. G. Morris, “Introduction. Long-term potentiation and structure of the issue,” Philosophical Transactions of the Royal Society B, vol. 358, pp. 607–611, 2003. View at Google Scholar
  35. M. González-Gaitán and H. Stenmark, “Endocytosis and signaling: a relationship under development,” Cell, vol. 115, no. 5, pp. 513–521, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. K. Shenoy, M. T. Drake, C. D. Nelson et al., “β-arrestin-dependent, G protein-independent ERK1/2 activation by the β2 adrenergic receptor,” Journal of Biological Chemistry, vol. 281, no. 2, pp. 1261–1273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Russo-Neustadt and C. W. Cotman, “Adrenergic receptors in Alzheimer's disease brain: selective increases in the cerebella of aggressive patients,” Journal of Neuroscience, vol. 17, no. 14, pp. 5573–5580, 1997. View at Google Scholar · View at Scopus
  38. E. M. Snyder, Y. Nong, C. G. Almeida et al., “Regulation of NMDA receptor trafficking by amyloid-β,” Nature Neuroscience, vol. 8, no. 8, pp. 1051–1058, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. Q. W. Wang, M. J. Rowan, and R. Anwyl, “Inhibition of LTP by beta-amyloid is prevented by activation of β2 adrenoceptors and stimulation of the cAMP/PKA signalling pathway,” Neurobiology of Aging, vol. 30, no. 10, pp. 1608–1613, 2009. View at Publisher · View at Google Scholar · View at Scopus