Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 141947, 5 pages
http://dx.doi.org/10.1155/2012/141947
Research Article

Inhibitory Effect of Helicteres gardneriana Ethanol Extract on Acute Inflammation

1Laboratory of Inflammation, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, Brazil
2Laboratory of Pharmaceutical Technology, Department of Pharmacy, State University of Maringá, Maringá, PR, Brazil

Received 16 June 2011; Revised 6 August 2011; Accepted 16 August 2011

Academic Editor: Ulysses Paulino De Albuquerque

Copyright © 2012 Juliana Oliveira de Melo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Jiangsu New Medical College, Dictionary of Chinese Herbmedicines, Scientific & Technologic Press, Shanghai, China, 1986.
  2. N. Y. Chiu and K. S. Chang, The Illustrated Medicinal Plants of Taiwan (I), Southern Materials Center, Taipei, Taiwan, 1995.
  3. K. Kamiya, Y. Saiki, T. Hama et al., “Flavonoid glucuronides from Helicteres isora,” Phytochemistry, vol. 57, no. 2, pp. 297–301, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Venkatesh, K. S. Laxmi, B. M. Reddy, and M. Ramesh, “Antinociceptive activity of Helicteres isora,” Fitoterapia, vol. 78, no. 2, pp. 146–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. B. Singh, A. K. Singh, and R. S. Thakur, “Chemical constituents of the leaves of Helicteres isora,” Indian Journal of Pharmaceutical Sciences, vol. 46, pp. 148–149, 1984. View at Google Scholar
  6. W. G. Liu and M. S. Wang, “Three new triterpenoids from Helicteres angustifolia,” Acta Pharmacologica Sinica, vol. 20, pp. 842–851, 1985. View at Google Scholar
  7. M. F. Bean, M. Antoun, D. Abramson, C. J. Chang, J. L. Mclaughlin, and J. M. Cassady, “Cucurbitacin B and isocucurbitacin B: cytotoxic components of Helicteres isora,” Journal of Natural Products, vol. 48, no. 3, pp. 500–503, 1985. View at Google Scholar · View at Scopus
  8. W. Chen, W. Tang, L. Lou, and W. Zhao, “Pregnane, coumarin and lupane derivatives and cytotoxic constituents from Helicteres angustifolia,” Phytochemistry, vol. 67, no. 10, pp. 1041–1047, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. T. Chen, S. W. Lee, and C. M. Chen, “New flavoid glycosides of Helicteres angustifolia,” Heterocycles, vol. 38, no. 6, pp. 1399–1406, 1994. View at Google Scholar · View at Scopus
  10. P. Ramesh and C. R. Yuvarajan, “A new flavone methyl ether from Helicteres isora,” Journal of Natural Products, vol. 58, no. 8, pp. 1242–1243, 1995. View at Google Scholar · View at Scopus
  11. Y. Tezuka, M. Terazono, T. I. Kusumoto et al., “Helisterculins A and B, two new (7. 5', 8. 2')-neolignans, and herisorin, the first (6. 4', 7. 5', 8. 2')-neolignan, from the Indonesian medicinal plant Helicteres isora,” Helvetica Chimica Acta, vol. 82, no. 3, pp. 408–417, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Satake, K. Kamiya, Y. Saiki et al., “Studies on the constituents of fruits of Helicteres isora,” Chemical and Pharmaceutical Bulletin, vol. 47, no. 10, pp. 1444–1447, 1999. View at Google Scholar · View at Scopus
  13. S. Nair, Studies on an Ayurvedic drug Helicteres isora Linn, M.Pharm. thesis, SNDT Women's University, 1996.
  14. J. M. Escandell, M. C. Recio, S. Máñez, R. M. Giner, M. Cerdá-Nicolás, and J. L. Ríos, “Dihydrocucurbitacin B, isolated from Cayaponia tayuya, reduces damage in adjuvant-induced arthritis,” European Journal of Pharmacology, vol. 532, no. 1-2, pp. 145–154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Aquila, R. M. Giner, M. C. Recio, E. D. Spegazzini, and J. L. Ríos, “Anti-inflammatory activity of flavonoids from Cayaponia tayuya roots,” Journal of Ethnopharmacology, vol. 121, no. 2, pp. 333–337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. E. Rotelli, T. Guardia, A. O. Juárez, N. E. De La Rocha, and L. E. Pelzer, “Comparative study of flavonoids in experimental models of inflammation,” Pharmacological Research, vol. 48, no. 6, pp. 601–606, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Y. Cho, K. U. Baik, E. S. Yoo, K. Yoshikawa, and M. H. Park, “In vitro antiinflammatory effects of neolignan woorenosides from the rhizomes of Coptis japonica,” Journal of Natural Products, vol. 63, no. 9, pp. 1205–1209, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Parnham and K. Kesselring, “Rosmarinic acid,” Drugs of the Future, vol. 10, no. 9, pp. 756–757, 1985. View at Google Scholar · View at Scopus
  19. K. H. C. Baser, “Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils,” Current Pharmaceutical Design, vol. 14, no. 29, pp. 3106–3119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. O. Melo, F. Pedrochi, M. L. Baesso et al., “Evidence of deep percutaneous penetration associated with anti-inflammatory activity of topically applied Helicteres gardneriana extract: a photoacoustic spectroscopy study,” Pharmaceutical Research, vol. 28, no. 2, pp. 331–336, 2011. View at Publisher · View at Google Scholar
  21. S. H. P. Farsky, P. Borelli, R. A. Fock, S. Z. Proto, J. M. C. Ferreira Jr., and S. B. V. Melo, “Chronic blockade of nitric oxide biosynthesis in rats: effect on leukocyte endothelial interaction and on leukocyte recruitment,” Inflammation Research, vol. 53, no. 9, pp. 442–452, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. S. P. Alom-Ruiz, N. Anilkumar, and A. M. Shah, “Reactive oxygen species and endothelial activation,” Antioxidants and Redox Signaling, vol. 10, no. 6, pp. 1089–1100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. G. Tidball, “Inflammatory processes in muscle injury and repair,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 288, no. 2, pp. R345–R353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. C. T. Truiti, C. A. Bersani-Amado, B. P. Dias Filho, M. H. Sarragiotto, and M. C. De Souza, “Screening of five Brazilian plants for anti-inflammatory and antimicrobial activities,” Pharmaceutical Biology, vol. 44, no. 7, pp. 516–552, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Vinegar, J. F. Truax, and J. L. Selph, “Some quantitative temporal characteristics of carrageenin induced pleurisy in the rat,” Proceedings of the Society for Experimental Biology and Medicine, vol. 143, no. 3, pp. 711–714, 1973. View at Google Scholar · View at Scopus
  26. M. B. Grisham, G. G. Johnson, and J. R. Lancaster Jr., “Quantification of nitrate and nitrite in extracelular fluids,” Methods in Enzymology, vol. 268, pp. 237–246, 1996. View at Google Scholar
  27. S. Baez, “Simultaneous measurements of radii and wall thickness of microvessels in the anesthetized rat,” Circulation Research, vol. 25, no. 3, pp. 315–329, 1969. View at Google Scholar · View at Scopus
  28. Z. B. Fortes, S. P. Farsky, M. A. Oliveira, and J. Garcia-Leme, “Direct vital microscopic study of defective leukocyte-endothelial interaction in diabetes mellitus,” Diabetes, vol. 40, no. 10, pp. 1267–1273, 1991. View at Google Scholar · View at Scopus
  29. M. Di Rosa and D. A. Willoughby, “Screens for anti-inflammatory drugs,” Journal of Pharmacy and Pharmacology, vol. 23, no. 4, pp. 297–298, 1971. View at Google Scholar · View at Scopus
  30. E. K. Tamura, R. S. Jimenez, K. Waismam et al., “Inhibitory effects of Solidago chilensis Meyen hydroalcoholic extract on acute inflammation,” Journal of Ethnopharmacology, vol. 122, no. 3, pp. 478–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. C. Hogg and B. A. Walker, “Polymorphonuclear leucocyte traffic in lung inflammation,” Thorax, vol. 50, no. 8, pp. 819–820, 1995. View at Google Scholar · View at Scopus
  32. C. V. Wedmore and T. J. Williams, “Control of vascular permeability by polymorphonuclear leukocytes in inflammation,” Nature, vol. 289, no. 5799, pp. 646–650, 1981. View at Google Scholar · View at Scopus
  33. K. E. Arfors, C. Lundberg, L. Lindbom, K. Lundberg, P. G. Beatty, and M. Harlan, “A monoclonal antibody to the membrane glycoprotein complex CD18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo,” Blood, vol. 69, no. 1, pp. 338–340, 1987. View at Google Scholar · View at Scopus
  34. B. T. Wipke and P. M. Allen, “Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis,” Journal of Immunology, vol. 167, no. 3, pp. 1601–1608, 2001. View at Google Scholar · View at Scopus
  35. S. Houle, M. D. Papez, M. Ferazzini, M. D. Hollenberg, and N. Vergnolle, “Neutrophils and the kallikrein-kinin system in proteinase-activated receptor 4-mediated inflammation in rodents,” The British Journal of Pharmacology, vol. 146, no. 5, pp. 670–678, 2005. View at Publisher · View at Google Scholar · View at Scopus