Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 141947, 5 pages
http://dx.doi.org/10.1155/2012/141947
Research Article
Inhibitory Effect of Helicteres gardneriana Ethanol Extract on Acute Inflammation
1Laboratory of Inflammation, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, Brazil
2Laboratory of Pharmaceutical Technology, Department of Pharmacy, State University of Maringá, Maringá, PR, Brazil
Received 16 June 2011; Revised 6 August 2011; Accepted 16 August 2011
Academic Editor: Ulysses Paulino De Albuquerque
Copyright © 2012 Juliana Oliveira de Melo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- Jiangsu New Medical College, Dictionary of Chinese Herbmedicines, Scientific & Technologic Press, Shanghai, China, 1986.
- N. Y. Chiu and K. S. Chang, The Illustrated Medicinal Plants of Taiwan (I), Southern Materials Center, Taipei, Taiwan, 1995.
- K. Kamiya, Y. Saiki, T. Hama et al., “Flavonoid glucuronides from Helicteres isora,” Phytochemistry, vol. 57, no. 2, pp. 297–301, 2001. View at Publisher · View at Google Scholar · View at Scopus
- S. Venkatesh, K. S. Laxmi, B. M. Reddy, and M. Ramesh, “Antinociceptive activity of Helicteres isora,” Fitoterapia, vol. 78, no. 2, pp. 146–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
- S. B. Singh, A. K. Singh, and R. S. Thakur, “Chemical constituents of the leaves of Helicteres isora,” Indian Journal of Pharmaceutical Sciences, vol. 46, pp. 148–149, 1984. View at Google Scholar
- W. G. Liu and M. S. Wang, “Three new triterpenoids from Helicteres angustifolia,” Acta Pharmacologica Sinica, vol. 20, pp. 842–851, 1985. View at Google Scholar
- M. F. Bean, M. Antoun, D. Abramson, C. J. Chang, J. L. Mclaughlin, and J. M. Cassady, “Cucurbitacin B and isocucurbitacin B: cytotoxic components of Helicteres isora,” Journal of Natural Products, vol. 48, no. 3, pp. 500–503, 1985. View at Google Scholar · View at Scopus
- W. Chen, W. Tang, L. Lou, and W. Zhao, “Pregnane, coumarin and lupane derivatives and cytotoxic constituents from Helicteres angustifolia,” Phytochemistry, vol. 67, no. 10, pp. 1041–1047, 2006. View at Publisher · View at Google Scholar · View at Scopus
- Z. T. Chen, S. W. Lee, and C. M. Chen, “New flavoid glycosides of Helicteres angustifolia,” Heterocycles, vol. 38, no. 6, pp. 1399–1406, 1994. View at Google Scholar · View at Scopus
- P. Ramesh and C. R. Yuvarajan, “A new flavone methyl ether from Helicteres isora,” Journal of Natural Products, vol. 58, no. 8, pp. 1242–1243, 1995. View at Google Scholar · View at Scopus
- Y. Tezuka, M. Terazono, T. I. Kusumoto et al., “Helisterculins A and B, two new (7. 5', 8. 2')-neolignans, and herisorin, the first (6. 4', 7. 5', 8. 2')-neolignan, from the Indonesian medicinal plant Helicteres isora,” Helvetica Chimica Acta, vol. 82, no. 3, pp. 408–417, 1999. View at Publisher · View at Google Scholar · View at Scopus
- T. Satake, K. Kamiya, Y. Saiki et al., “Studies on the constituents of fruits of Helicteres isora,” Chemical and Pharmaceutical Bulletin, vol. 47, no. 10, pp. 1444–1447, 1999. View at Google Scholar · View at Scopus
- S. Nair, Studies on an Ayurvedic drug Helicteres isora Linn, M.Pharm. thesis, SNDT Women's University, 1996.
- J. M. Escandell, M. C. Recio, S. Máñez, R. M. Giner, M. Cerdá-Nicolás, and J. L. Ríos, “Dihydrocucurbitacin B, isolated from Cayaponia tayuya, reduces damage in adjuvant-induced arthritis,” European Journal of Pharmacology, vol. 532, no. 1-2, pp. 145–154, 2006. View at Publisher · View at Google Scholar · View at Scopus
- S. Aquila, R. M. Giner, M. C. Recio, E. D. Spegazzini, and J. L. Ríos, “Anti-inflammatory activity of flavonoids from Cayaponia tayuya roots,” Journal of Ethnopharmacology, vol. 121, no. 2, pp. 333–337, 2009. View at Publisher · View at Google Scholar · View at Scopus
- A. E. Rotelli, T. Guardia, A. O. Juárez, N. E. De La Rocha, and L. E. Pelzer, “Comparative study of flavonoids in experimental models of inflammation,” Pharmacological Research, vol. 48, no. 6, pp. 601–606, 2003. View at Publisher · View at Google Scholar · View at Scopus
- J. Y. Cho, K. U. Baik, E. S. Yoo, K. Yoshikawa, and M. H. Park, “In vitro antiinflammatory effects of neolignan woorenosides from the rhizomes of Coptis japonica,” Journal of Natural Products, vol. 63, no. 9, pp. 1205–1209, 2000. View at Publisher · View at Google Scholar · View at Scopus
- M. J. Parnham and K. Kesselring, “Rosmarinic acid,” Drugs of the Future, vol. 10, no. 9, pp. 756–757, 1985. View at Google Scholar · View at Scopus
- K. H. C. Baser, “Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils,” Current Pharmaceutical Design, vol. 14, no. 29, pp. 3106–3119, 2008. View at Publisher · View at Google Scholar · View at Scopus
- J. O. Melo, F. Pedrochi, M. L. Baesso et al., “Evidence of deep percutaneous penetration associated with anti-inflammatory activity of topically applied Helicteres gardneriana extract: a photoacoustic spectroscopy study,” Pharmaceutical Research, vol. 28, no. 2, pp. 331–336, 2011. View at Publisher · View at Google Scholar
- S. H. P. Farsky, P. Borelli, R. A. Fock, S. Z. Proto, J. M. C. Ferreira Jr., and S. B. V. Melo, “Chronic blockade of nitric oxide biosynthesis in rats: effect on leukocyte endothelial interaction and on leukocyte recruitment,” Inflammation Research, vol. 53, no. 9, pp. 442–452, 2004. View at Publisher · View at Google Scholar · View at Scopus
- S. P. Alom-Ruiz, N. Anilkumar, and A. M. Shah, “Reactive oxygen species and endothelial activation,” Antioxidants and Redox Signaling, vol. 10, no. 6, pp. 1089–1100, 2008. View at Publisher · View at Google Scholar · View at Scopus
- J. G. Tidball, “Inflammatory processes in muscle injury and repair,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 288, no. 2, pp. R345–R353, 2005. View at Publisher · View at Google Scholar · View at Scopus
- M. C. T. Truiti, C. A. Bersani-Amado, B. P. Dias Filho, M. H. Sarragiotto, and M. C. De Souza, “Screening of five Brazilian plants for anti-inflammatory and antimicrobial activities,” Pharmaceutical Biology, vol. 44, no. 7, pp. 516–552, 2006. View at Publisher · View at Google Scholar · View at Scopus
- R. Vinegar, J. F. Truax, and J. L. Selph, “Some quantitative temporal characteristics of carrageenin induced pleurisy in the rat,” Proceedings of the Society for Experimental Biology and Medicine, vol. 143, no. 3, pp. 711–714, 1973. View at Google Scholar · View at Scopus
- M. B. Grisham, G. G. Johnson, and J. R. Lancaster Jr., “Quantification of nitrate and nitrite in extracelular fluids,” Methods in Enzymology, vol. 268, pp. 237–246, 1996. View at Google Scholar
- S. Baez, “Simultaneous measurements of radii and wall thickness of microvessels in the anesthetized rat,” Circulation Research, vol. 25, no. 3, pp. 315–329, 1969. View at Google Scholar · View at Scopus
- Z. B. Fortes, S. P. Farsky, M. A. Oliveira, and J. Garcia-Leme, “Direct vital microscopic study of defective leukocyte-endothelial interaction in diabetes mellitus,” Diabetes, vol. 40, no. 10, pp. 1267–1273, 1991. View at Google Scholar · View at Scopus
- M. Di Rosa and D. A. Willoughby, “Screens for anti-inflammatory drugs,” Journal of Pharmacy and Pharmacology, vol. 23, no. 4, pp. 297–298, 1971. View at Google Scholar · View at Scopus
- E. K. Tamura, R. S. Jimenez, K. Waismam et al., “Inhibitory effects of Solidago chilensis Meyen hydroalcoholic extract on acute inflammation,” Journal of Ethnopharmacology, vol. 122, no. 3, pp. 478–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
- J. C. Hogg and B. A. Walker, “Polymorphonuclear leucocyte traffic in lung inflammation,” Thorax, vol. 50, no. 8, pp. 819–820, 1995. View at Google Scholar · View at Scopus
- C. V. Wedmore and T. J. Williams, “Control of vascular permeability by polymorphonuclear leukocytes in inflammation,” Nature, vol. 289, no. 5799, pp. 646–650, 1981. View at Google Scholar · View at Scopus
- K. E. Arfors, C. Lundberg, L. Lindbom, K. Lundberg, P. G. Beatty, and M. Harlan, “A monoclonal antibody to the membrane glycoprotein complex CD18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo,” Blood, vol. 69, no. 1, pp. 338–340, 1987. View at Google Scholar · View at Scopus
- B. T. Wipke and P. M. Allen, “Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis,” Journal of Immunology, vol. 167, no. 3, pp. 1601–1608, 2001. View at Google Scholar · View at Scopus
- S. Houle, M. D. Papez, M. Ferazzini, M. D. Hollenberg, and N. Vergnolle, “Neutrophils and the kallikrein-kinin system in proteinase-activated receptor 4-mediated inflammation in rodents,” The British Journal of Pharmacology, vol. 146, no. 5, pp. 670–678, 2005. View at Publisher · View at Google Scholar · View at Scopus