Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 163106, 11 pages
http://dx.doi.org/10.1155/2012/163106
Research Article

Green Tea Extract Ameliorates Learning and Memory Deficits in Ischemic Rats via Its Active Component Polyphenol Epigallocatechin-3-gallate by Modulation of Oxidative Stress and Neuroinflammation

1School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
2Department of Pharmacology, University of Minnesota and Geriatric Research, Education and Clinical Center, VA Medical Center, Minneapolis, MN 55455, USA
3Department of Pharmacology, College of Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
4Department of Pharmacy, China Medical University Hospital, Taichung 40421, Taiwan

Received 22 March 2012; Revised 6 June 2012; Accepted 8 June 2012

Academic Editor: Paul Siu-Po Ip

Copyright © 2012 Kuo-Jen Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. H. Lo, T. Dalkara, and M. A. Moskowitz, “Mechanisms, challenges and opportunities in stroke,” Nature Reviews Neuroscience, vol. 4, no. 5, pp. 399–415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Xiang, Y. P. Tang, P. Wu, J. P. Gao, and D. F. Cai, “Chinese medicine Nao-Shuan-Tong attenuates cerebral ischemic injury by inhibiting apoptosis in a rat model of stroke,” Journal of Ethnopharmacology, vol. 131, no. 1, pp. 174–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. U. Yanpallewar, D. Hota, S. Rai, M. Kumar, and S. B. Acharya, “Nimodipine attenuates biochemical, behavioral and histopathological alterations induced by acute transient and long-term bilateral common carotid occlusion in rats,” Pharmacological Research, vol. 49, no. 2, pp. 143–150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. McCord, “Oxygen-derived free radicals in postischemic tissue injury,” The New England Journal of Medicine, vol. 312, no. 3, pp. 159–163, 1985. View at Google Scholar · View at Scopus
  5. R. L. Macdonald and M. Stoodley, “Pathophysiology of cerebral ischemia,” Neurologia Medico-Chirurgica, vol. 38, no. 1, pp. 1–11, 1998. View at Google Scholar · View at Scopus
  6. J. M. Lee, G. J. Zipfel, and D. W. Choi, “The changing landscape of ischaemic brain injury mechanisms,” Nature, vol. 399, no. 6738, supplement, pp. A7–14, 1999. View at Google Scholar · View at Scopus
  7. P. H. Chan, “Role of oxidants in ischemic brain damage,” Stroke, vol. 27, no. 6, pp. 1124–1129, 1996. View at Google Scholar · View at Scopus
  8. M. K. Reddy and V. Labhasetwar, “Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury,” The FASEB Journal, vol. 23, no. 5, pp. 1384–1395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Pan, A. A. Konstas, B. Bateman, G. A. Ortolano, and J. Pile-Spellman, “Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies,” Neuroradiology, vol. 49, no. 2, pp. 93–102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Kindy, A. N. Bhat, and N. R. Bhat, “Transient ischemia stimulates glial fibrillary acid protein and vimentin gene expression in the gerbil neocortex, striatum and hippocampus,” Molecular Brain Research, vol. 13, no. 3, pp. 199–206, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. V. L. Raghavendra Rao, A. M. Rao, A. Dogan et al., “Glial glutamate transporter GLT-1 down-regulation precedes delayed neuronal death in gerbil hippocampus following transient global cerebral ischemia,” Neurochemistry International, vol. 36, no. 6, pp. 531–537, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. R. G. M. Morris, P. Garrud, J. N. P. Rawlins, and J. O'Keefe, “Place navigation impaired in rats with hippocampal lesions,” Nature, vol. 297, no. 5868, pp. 681–683, 1982. View at Google Scholar · View at Scopus
  13. G. W. Kreutzberg, “Microglia, the first line of defence in brain pathologies,” Arzneimittel-Forschung, vol. 45, no. 3, pp. 357–360, 1995. View at Google Scholar · View at Scopus
  14. E. A. Bushong, M. E. Martone, Y. Z. Jones, and M. H. Ellisman, “Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains,” Journal of Neuroscience, vol. 22, no. 1, pp. 183–192, 2002. View at Google Scholar · View at Scopus
  15. L. Dissing-Olesen, R. Ladeby, H. H. Nielsen, H. Toft-Hansen, I. Dalmau, and B. Finsen, “Axonal lesion-induced microglial proliferation and microglial cluster formation in the mouse,” Neuroscience, vol. 149, no. 1, pp. 112–122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Walter and H. Neumann, “Role of microglia in neuronal degeneration and regeneration,” Seminars in Immunopathology, vol. 31, no. 4, pp. 513–525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Gehrmann, Y. Matsumoto, and G. W. Kreutzberg, “Microglia: intrinsic immuneffector cell of the brain,” Brain Research Reviews, vol. 20, no. 3, pp. 269–287, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Wolosker, E. Dumin, L. Balan, and V. N. Foltyn, “D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration,” The FEBS Journal, vol. 275, no. 14, pp. 3514–3526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. V. Gourine, V. Kasymov, N. Marina et al., “Astrocytes control breathing through pH-dependent release of ATP,” Science, vol. 329, no. 5991, pp. 571–575, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Blasi, R. Barluzzi, R. Mazzolla et al., “Role of nitric oxide and melanogenesis in the accomplishment of anticryptococcal activity by the BV-2 microglial cell line,” Journal of Neuroimmunology, vol. 58, no. 1, pp. 111–116, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Kang, P. J. Kong, Y. J. Yuh et al., “Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor κb bindings in BV2 microglial cells,” Journal of Pharmacological Sciences, vol. 94, no. 3, pp. 325–328, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Neumann, M. Gunzer, H. O. Gutzeit, O. Ullrich, K. G. Reymann, and K. Dinkel, “Microglia provide neuroprotection after ischemia,” The FASEB Journal, vol. 20, no. 6, pp. 714–716, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. T. Hong, S. R. Ryu, H. J. Kim et al., “Neuroprotective effect of green tea extract in experimental ischemia-reperfusion brain injury,” Brain Research Bulletin, vol. 53, no. 6, pp. 743–749, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Suzuki, M. Tabuchi, M. Ikeda, K. Umegaki, and T. Tomita, “Protective effects of green tea catechins on cerebral ischemic damage,” Medical Science Monitor, vol. 10, no. 6, pp. BR166–BR174, 2004. View at Google Scholar · View at Scopus
  25. J. T. Hong, S. R. Ryu, H. J. Kim et al., “Protective effect of green tea extract on ischemia/reperfusion-induced brain injury in Mongolian gerbils,” Brain Research, vol. 888, no. 1, pp. 11–18, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. Guo, B. Zhao, M. Li, S. Shen, and X. Wenjuan, “Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes,” Biochimica et Biophysica Acta, vol. 1304, no. 3, pp. 210–222, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Zhao, Q. Guo, and W. Xin, “Free radical scavenging by green tea polyphenols,” Methods in Enzymology, vol. 335, pp. 217–231, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. R. L. Thangapazham, A. K. Singh, A. Sharma, J. Warren, J. P. Gaddipati, and R. K. Maheshwari, “Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo,” Cancer Letters, vol. 245, no. 1-2, pp. 232–241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. H. P. Kim, K. H. Son, H. W. Chang, and S. S. Kang, “Anti-inflammatory plant flavonoids and cellular action mechanisms,” Journal of Pharmacological Sciences, vol. 96, no. 3, pp. 229–245, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Li, Y. G. Huang, D. Fang, and W. D. Le, “(-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury,” Journal of Neuroscience Research, vol. 78, no. 5, pp. 723–731, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. R. M. A. Rahman, S. M. Nair, S. C. Helps et al., “(-)-Epigallocatechin gallate as an intervention for the acute treatment of cerebral ischemia,” Neuroscience Letters, vol. 382, no. 3, pp. 227–230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. B. Choi, Y. I. Kim, K. S. Lee, B. S. Kim, and D. J. Kim, “Protective effect of epigallocatechin gallate on brain damage after transient middle cerebral artery occlusion in rats,” Brain Research, vol. 1019, no. 1-2, pp. 47–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. S. R. Lee, S. I. Suh, and S. P. Kim, “Protective effects of the green tea polyphenol (-)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils,” Neuroscience Letters, vol. 287, no. 3, pp. 191–194, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Lee, J. H. Bae, and S. R. Lee, “Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils,” Journal of Neuroscience Research, vol. 77, no. 6, pp. 892–900, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Y. Ju, S. C. Chen, K. J. Wu et al., “Antioxidant phenolic profile from ethyl acetate fraction of Fructus Ligustri Lucidi with protection against hydrogen peroxide-induced oxidative damage in SH-SY5Y cells,” Food and Chemical Toxicology, vol. 50, no. 3-4, pp. 492–502, 2012. View at Google Scholar
  36. H. Yanamoto, I. Nagata, Y. Niitsu, J. H. Xue, Z. Zhang, and H. Kikuchi, “Evaluation of MCAO stroke models in normotensive rats: standardized neocortical infarction by the 3VO technique,” Experimental Neurology, vol. 182, no. 2, pp. 261–274, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Morris, “Developments of a water-maze procedure for studying spatial learning in the rat,” Journal of Neuroscience Methods, vol. 11, no. 1, pp. 47–60, 1984. View at Publisher · View at Google Scholar · View at Scopus
  38. C. R. Wu, L. W. Lin, C. L. Hsieh, W. H. Wang, Y. T. Lin, and M. T. Hsieh, “Petroleum ether extract of Cnidium monnieri ameliorated scopolamine-induced amnesia through adrenal gland-mediated mechanism in male rats,” Journal of Ethnopharmacology, vol. 117, no. 3, pp. 403–407, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Bergman, A. Perelman, Z. Dubinsky, and S. Grossman, “Scavenging of reactive oxygen species by a novel glucurinated flavonoid antioxidant isolated and purified from spinach,” Phytochemistry, vol. 62, no. 5, pp. 753–762, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Kasemsri and W. M. Armstead, “Endothelin production links superoxide generation to altered opioid-induced pial artery vasodilation after brain injury in pigs,” Stroke, vol. 28, no. 1, pp. 190–197, 1997. View at Google Scholar · View at Scopus
  41. M. E. Anderson, “Determination of glutathione and glutathione disulfide in biological samples,” Methods in Enzymology, vol. 113, pp. 548–555, 1985. View at Google Scholar · View at Scopus
  42. Y. F. Chen, P. C. Kuo, H. H. Chan et al., “β-Carboline alkaloids from Stellaria dichotoma var. lanceolata and their anti-inflammatory activity,” Journal of Natural Products, vol. 73, no. 12, pp. 1993–1998, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. J. T. Hong, S. R. Ryu, H. J. Kim, S. H. Lee, B. M. Lee, and P. Y. Kim, “Involvement of cortical damage in the ischemia/reperfusion-induced memory impairment of Wistar rats,” Archives of Pharmacal Research, vol. 23, no. 4, pp. 413–417, 2000. View at Google Scholar · View at Scopus
  44. H. P. Davis, J. Tribuna, W. A. Pulsinelli, and B. T. Volpe, “Reference and working memory of rats following hippocampal damage induced by transient forebrain ischemia,” Physiology and Behavior, vol. 37, no. 3, pp. 387–392, 1986. View at Google Scholar · View at Scopus
  45. K. Rezai-Zadeh, G. W. Arendash, H. Hou et al., “Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice,” Brain Research, vol. 1214, pp. 177–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Baluchnejadmojarad and M. Roghani, “Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress,” Behavioural Brain Research, vol. 224, no. 2, pp. 305–310, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Pu, K. Mishima, K. Irie et al., “Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats,” Journal of Pharmacological Sciences, vol. 104, no. 4, pp. 329–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Cui, X. Luo, K. Xu, and M. R. Ven Murthy, “Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 28, no. 5, pp. 771–799, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Kawase, K. Murakami, M. Fujimura et al., “Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency,” Stroke, vol. 30, no. 9, pp. 1962–1968, 1999. View at Google Scholar · View at Scopus
  50. E. Candelario-Jalil, N. H. Mhadu, S. M. Al-Dalain, G. Martínez, and O. S. León, “Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils,” Neuroscience Research, vol. 41, no. 3, pp. 233–241, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Wattanathorn, J. Jittiwat, T. Tongun, S. Muchimapura, and K. Ingkaninan, “Zingiber officinale mitigates brain damage and improves memory impairment in focal cerebral ischemic rat,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 429505, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Kiray, H. A. Bagriyanik, C. Pekcetin, B. U. Ergur, and N. Uysal, “Protective effects of deprenyl in transient cerebral ischemia in rats,” The Chinese Journal of Physiology, vol. 51, no. 5, pp. 275–281, 2008. View at Google Scholar · View at Scopus
  53. K. Kondo, M. Kurihara, N. Miyata, T. Suzuki, and M. Toyoda, “Scavenging mechanisms of (-)-epigallocatechin gallate and (-)-epicatechin gallate on peroxyl radicals and formation of superoxide during the inhibitory action,” Free Radical Biology and Medicine, vol. 27, no. 7-8, pp. 855–863, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. W. Chan and C. S. Kay, “Pentoxifylline in the treatment of acute ischaemic stroke–a reappraisal in Chinese stroke patients,” Clinical and Experimental Neurology, vol. 30, pp. 110–116, 1993. View at Google Scholar · View at Scopus
  55. P. M. Bath and F. J. Bath-Hextall, “Pentoxifylline, propentofylline and pentifylline for acute ischaemic stroke,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD000162, 2004. View at Google Scholar · View at Scopus
  56. R. S. Black, L. L. Barclay, K. A. Nolan, H. T. Thaler, S. T. Hardiman, and J. P. Blass, “Pentoxifylline in cerebrovascular dementia,” Journal of the American Geriatrics Society, vol. 40, no. 3, pp. 237–244, 1992. View at Google Scholar · View at Scopus
  57. B. Horvath, Z. Marton, R. Halmosi et al., “In vitro antioxidant properties of pentoxifylline, piracetam, and vinpocetine,” Clinical Neuropharmacology, vol. 25, no. 1, pp. 37–42, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Chamorro and J. Hallenbeck, “The harms and benefits of inflammatory and immune responses in vascular disease,” Stroke, vol. 37, no. 2, pp. 291–293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Y. Lu, C. H. Tang, Y. H. Chen, and I. H. Wei, “Berberine suppresses neuroinflammatory responses through AMP-activated protein kinase activation in BV-2 microglia,” Journal of Cellular Biochemistry, vol. 110, no. 3, pp. 697–705, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. C. C. Chao, S. Hu, T. W. Molitor, E. G. Shaskan, and P. K. Peterson, “Activated microglia mediate neuronal cell injury via a nitric oxide mechanism,” Journal of Immunology, vol. 149, no. 8, pp. 2736–2741, 1992. View at Google Scholar · View at Scopus
  61. A. Y. Sun and Y. M. Chen, “Oxidative stress and neurodegenerative disorders,” Journal of Biomedical Science, vol. 5, no. 6, pp. 401–414, 1998. View at Google Scholar · View at Scopus
  62. B. Liu, L. Du, and J. S. Hong, “Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation,” Journal of Pharmacology and Experimental Therapeutics, vol. 293, no. 2, pp. 607–617, 2000. View at Google Scholar · View at Scopus