Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 163280, 8 pages
http://dx.doi.org/10.1155/2012/163280
Research Article

Antidiabetic Effect of Morinda citrifolia (Noni) Fermented by Cheonggukjang in KK-Ay Diabetic Mice

Fermentation and Functionality Research Group, Korea Food Research Institute, Gyeonggi-Do, Sungnam-Si 463-746, Republic of Korea

Received 19 March 2012; Accepted 17 July 2012

Academic Editor: Pierre Kamtchouing

Copyright © 2012 So-Young Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. G. M. M. Alberti and P. Z. Zimmet, “Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1sdiagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation,” Diabetic Medicine, vol. 15, no. 7, pp. 539–553, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 27, supplement 1, pp. S5–S10, 2004. View at Google Scholar · View at Scopus
  3. Y. Lin and Z. Sun, “Current views on type 2 diabetes,” Journal of Endocrinology, vol. 204, no. 1, pp. 1–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. R. Chattopadhyay, “A comparative evaluation of some blood sugar lowering agents of plant origin,” Journal of Ethnopharmacology, vol. 67, no. 3, pp. 367–372, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Miura, N. Ueda, K. Yamada et al., “Antidiabetic effects of corosolic acid in KK-Ay diabetic mice,” Biological and Pharmaceutical Bulletin, vol. 29, no. 3, pp. 585–587, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Baskaran, B. K. Ahamath, K. R. Shanmugasundaram, and E. R. B. Shanmugasundaram, “Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients,” Journal of Ethnopharmacology, vol. 30, no. 3, pp. 295–305, 1990. View at Google Scholar · View at Scopus
  7. Y. Iizuka, E. Sakurai, and Y. Tanaka, “Antidiabetic effect of folium mori in GK rats,” Yakugaku Zasshi, vol. 121, no. 5, pp. 365–369, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. W. K. Oh, C. H. Lee, M. S. Lee et al., “Antidiabetic effects of extracts from Psidium guajava,” Journal of Ethnopharmacology, vol. 96, no. 3, pp. 411–415, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Hirazumi, E. Furusawa, S. C. Chou, and Y. Hokama, “Immunomodulation contributes to the anticancer activity of Morinda citrifolia (Noni) fruit juice,” Proceedings of the Western Pharmacology Society, vol. 39, pp. 7–9, 1996. View at Google Scholar · View at Scopus
  10. B. S. Nayak, S. Sandiford, and A. Maxwell, “Evaluation of the wound-healing activity of ethanolic extract of Morinda citrifolia L. leaf,” Evidence-Based Complementary and Alternative Medicine, vol. 6, no. 3, pp. 351–356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Y. Wang and C. Su, “Cancer preventive effect of Morinda citrifolia (Noni),” Annals of the New York Academy of Sciences, vol. 952, pp. 161–168, 2001. View at Google Scholar · View at Scopus
  12. S. K. Singh, P. K. Rai, D. Jaiswal, and G. Watal, “Evidence-based critical evaluation of glycemic potential of Cynodon dactylon,” Evidence-Based Complementary and Alternative Medicine, vol. 5, no. 4, pp. 415–420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. S. Nayak, J. R. Marshall, G. Isitor, and A. Adogwa, “Hypoglycemic and hepatoprotective activity of fermented fruit juice of Morinda citrifolia (noni) in diabetic rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 875293, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Srinivasan and P. Ramarao, “Animal models in type 2 diabetes research: an overview,” Indian Journal of Medical Research, vol. 125, no. 3, pp. 451–472, 2007. View at Google Scholar · View at Scopus
  15. S. I. Lim and B. Y. Lee, “Anti-diabetic effect of material fermented using rice bran and soybean as the main ingredient by Bacillus sp,” Journal of Korean Society Application Biological Chemistry, vol. 53, no. 2, pp. 222–229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. I. Lim, C. W. Cho, U. K. Choi, and Y. C. Kim, “Antioxidant activity and ginsenoside pattern of fermented white ginseng,” Journal of Ginseng Research, vol. 34, no. 3, pp. 168–174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. R. Matthews, J. P. Hosker, A. S. Rudenski et al., “Homeostasis model assessment: insulin resistance and ß-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar · View at Scopus
  18. W. Y. Zhang, J. J. Lee, I. S. Kim, Y. Kim, J. S. Park, and C. S. Myung, “7-0-methylaromadendrin stimulates glucose uptake and improves insulin resistance in vitro,” Biological and Pharmaceutical Bulletin, vol. 33, no. 9, pp. 1494–1499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Saito, D. Abe, and K. Sekiya, “Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARγ2,” Biochemical and Biophysical Research Communications, vol. 372, no. 4, pp. 835–839, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Vessal, M. Hemmati, and M. Vasei, “Antidiabetic effects of quercetin in streptozocin-induced diabetic rats,” Comparative Biochemistry and Physiology C, vol. 135, no. 3, pp. 357–364, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. S. E. Shoelson, J. Lee, and A. B. Goldfine, “Inflammation and insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1793–1801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Okusada, K. Nakamoto, M. Nishida et al., “The antinociceptive and anti-inflammatory action of the CHCl 3-soluble phase and its main active component, damnacanthal, isolated from the root of Morinda citrifolia,” Biological and Pharmaceutical Bulletin, vol. 34, no. 1, pp. 103–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. B. N. Su, A. D. Pawlus, H. A. Jung, W. J. Keller, J. L. McLaughlin, and A. D. Kinghorn, “Chemical constituents of the fruits of Morinda citrifolia (Noni) and their antioxidant activity,” Journal of Natural Products, vol. 68, no. 4, pp. 592–595, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A. D. Pawlus, B. N. Su, W. J. Keller, and A. D. Kinghorn, “An anthraquinone with potent quinone reductase-inducing activity and other constituents of the fruits of Morinda citrifolia (Noni),” Journal of Natural Products, vol. 68, no. 12, pp. 1720–1722, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. D. G. Hardie, “Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status,” Endocrinology, vol. 144, no. 12, pp. 5179–5183, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. L. G. D. Fryer, A. Parbu-Patel, and D. Carling, “The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways,” Journal of Biological Chemistry, vol. 277, no. 28, pp. 25226–25232, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Zhou, R. Myers, Y. Li et al., “Role of AMP-activated protein kinase in mechanism of metformin action,” Journal of Clinical Investigation, vol. 108, no. 8, pp. 1167–1174, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Zang, A. Zuccollo, X. Hou et al., “AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells,” Journal of Biological Chemistry, vol. 279, no. 46, pp. 47898–47905, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. D. J. Cuthbertson, J. A. Babraj, K. J. W. Mustard et al., “5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside acutely stimulates skeletal muscle 2-deoxyglucose uptake in healthy men,” Diabetes, vol. 56, no. 8, pp. 2078–2084, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. S. Lee, J. T. Hwang, S. H. Kim et al., “Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism,” Journal of Ethnopharmacology, vol. 127, no. 3, pp. 771–776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Benhaddou-Andaloussi, L. C. Martineau, D. Vallerand et al., “Multiple molecular targets underlie the antidiabetic effect of Nigella sativa seed extract in skeletal muscle, adipocyte and liver cells,” Diabetes, Obesity and Metabolism, vol. 12, no. 2, pp. 148–167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. L. A. Leiter, “Can thiazolidinediones delay disease progression in type 2 diabetes?” Current Medical Research and Opinion, vol. 22, no. 6, pp. 1193–1201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. B. M. Spiegelman, “PPAR-γ: adipogenic regulator and thiazolidinedione receptor,” Diabetes, vol. 47, no. 4, pp. 507–514, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. M. C. Cho, K. Lee, S. G. Paik, and D. Y. Yoon, “Peroxisome proliferators-activated receptor (PPAR) modulators and metabolic disorders,” PPAR Research, vol. 2008, Article ID 679137, 14 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Girard, “Mechanisms of action of thiazolidinediones,” Diabetes and Metabolism, vol. 27, no. 2, pp. 271–278, 2001. View at Google Scholar · View at Scopus
  36. D. Y. Kwon, D. S. Kim, H. J. Yang, and S. Park, “The lignan-rich fractions of Fructus Schisandrae improve insulin sensitivity via the PPAR-γ pathways in in vitro and in vivo studies,” Journal of Ethnopharmacology, vol. 135, no. 2, pp. 455–462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Nagashima, C. Lopez, D. Donovan et al., “Effects of the PPARγ agonist pioglitazone on lipoprotein metabolism in patients with type 2 diabetes mellitus,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1323–1332, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. M. I. Freed, R. Ratner, S. M. Marcovina et al., “Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus,” American Journal of Cardiology, vol. 90, no. 9, pp. 947–952, 2002. View at Publisher · View at Google Scholar · View at Scopus