Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 306346, 11 pages
http://dx.doi.org/10.1155/2012/306346
Review Article

Cancer, Inflammation, and Insights from Ayurveda

1Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
2Symbiosis School of Biomedical Sciences, Symbiosis International University, Pune 412115, India

Received 1 December 2011; Revised 9 April 2012; Accepted 7 May 2012

Academic Editor: Tieraona Low Dog

Copyright © 2012 Venil N. Sumantran and Girish Tillu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Potti, R. L. Schilsky, and J. R. Nevins, “Refocusing the war on cancer: the critical role of personalized treatment,” Science Translational Medicine, vol. 2, no. 28, p. 28cm13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. V. N. Sumantran and G. Tillu, “Ayurvedic pharmaceutics and insights on personalized medicine,” in Progress in Traditional and Folk Herbal Medicine, vol. 1, chapter 2, VK Gupta, New Delhi, India, 2011. View at Google Scholar
  3. H. A. Hirsch, D. Iliopoulos, A. Joshi et al., “A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases,” Cancer Cell, vol. 17, no. 4, pp. 348–361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Chen, J. Zhu, P. Y. Lum et al., “Variations in DNA elucidate molecular networks that cause disease,” Nature, vol. 452, no. 7186, pp. 429–435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Karin, “Nuclear factor-κB in cancer development and progression,” Nature, vol. 441, no. 7092, pp. 431–436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Riehl, J. Németh, P. Angel, and J. Hess, “The receptor RAGE: bridging inflammation and cancer,” Cell Communication and Signaling, vol. 7, pp. 12–18, 2009. View at Publisher · View at Google Scholar
  9. A. Bierhaus, S. Schiekofer, M. Schwaninger et al., “Diabetes-associated sustained activation of the transcription factor nuclear factor-κB,” Diabetes, vol. 50, no. 12, pp. 2792–2808, 2001. View at Google Scholar · View at Scopus
  10. D. C. McMillan, “Systemic inflammation, nutritional status and survival in patients with cancer,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 12, no. 3, pp. 223–226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Shacter and S. A. Weitzman, “Chronic inflammation and cancer,” Oncology, vol. 16, no. 2, pp. 217–226, 2002. View at Google Scholar · View at Scopus
  12. Y. J. Surh, K. S. Chun, H. H. Cha et al., “Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation,” Mutation Research, vol. 480-481, pp. 243–268, 2001. View at Google Scholar · View at Scopus
  13. S. Shishodia, K. B. Harikumar, S. Dass, K. G. Ramawat, and B. B. Aggarwal, “The guggul for chronic diseases: ancient medicine, modern targets,” Anticancer Research, vol. 28, no. 6 A, pp. 3647–3664, 2008. View at Google Scholar · View at Scopus
  14. J. A. Menendez and R. Lupu, “Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis,” Nature Reviews Cancer, vol. 7, no. 10, pp. 763–777, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. U. V. Roongta, J. G. Pabalan, X. Wang et al., “Cancer cell dependence on unsaturated fatty acids implicates stearoyl-coA desaturase as a target for cancer therapy,” Molecular Cancer Research, vol. 9, pp. 1551–1561, 2011. View at Google Scholar
  16. K. R. Solomon and M. R. Freeman, “The complex interplay between cholesterol and prostate malignancy,” Urologic Clinics of North America, vol. 38, no. 3, pp. 243–259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Bielecka-Dąbrowa, S. Hannam, J. Rysz, and M. Banach, “Malignancy-associated dyslipidemia,” The Open Cardiovascular Medicine Journal, vol. 5, pp. 35–40, 2011. View at Google Scholar
  18. M. Khaidakov, S. Mitra, B. Y. Kang et al., “Oxidized LDL receptor 1 (OLR1) as a possible link between obesity, dyslipidemia and cancer,” PLoS ONE, vol. 6, no. 5, Article ID e20277, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Tsimikas and Y. I. Miller, “Oxidative modification of lipoproteins: mechanisms, role in inflammation and potential clinical applications in cardiovascular disease,” Current Pharmaceutical Design, vol. 17, no. 1, pp. 27–37, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Braun, K. Bitton-Worms, and D. Leroith, “The Link between the metabolic syndrome and cancer,” International Journal of Biological Sciences, vol. 7, pp. 1003–1015, 2011. View at Google Scholar
  21. A. E. Harvey, L. M. Lashinger, and S. D. Hursting, “The growing challenge of obesity and cancer: an inflammatory issue,” Annals of the New York Academy of Sciences, vol. 1229, no. 1, pp. 45–52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Stryjecki and D. M. Mutch, “Fatty acid-gene interactions, adipokines and obesity,” European Journal of Clinical Nutrition, vol. 65, no. 3, pp. 285–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. P. J. Havel, “Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin,” Current Opinion in Lipidology, vol. 13, no. 1, pp. 51–59, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Sun and S. R. Kashyap, “Cancer risk in type 2 diabetes mellitus: metabolic links and therapeutic considerations,” Journal of Nutrition and Metabolism, vol. 2011, 11 pages, 2011. View at Publisher · View at Google Scholar
  25. M. J. Puglisi and M. L. Fernandez, “Modulation of C-reactive protein, tumor necrosis factor-α, and adiponectin by diet, exercise, and weight loss,” Journal of Nutrition, vol. 138, no. 12, pp. 2293–2296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Vacca, C. Degirolamo, R. Mariani-Costantini, G. Palasciano, and A. Moschetta, “Lipid-sensing nuclear receptors in the pathophysiology and treatment of the metabolic syndrome,” Wiley Interdisciplinary Reviews, vol. 3, no. 5, pp. 562–587, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. S. Im and T. F. Osborne, “Liver X receptors in atherosclerosis and inflammation,” Circulation Research, vol. 108, no. 8, pp. 996–1001, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. C. P. Chuu, “Modulation of liver X receptor signaling as a prevention and therapy for colon cancer,” Medical Hypotheses, vol. 76, no. 5, pp. 697–699, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Bundscherer, A. Reichle, C. Hafner, S. Meyer, and T. Vogt, “Targeting the tumor stroma with peroxisome proliferator activated receptor (PPAR) agonists,” Anti-Cancer Agents in Medicinal Chemistry, vol. 9, no. 7, pp. 816–821, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Varga, Z. Czimmerer, and L. Nagy, “PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation,” Biochimica et Biophysica Acta, vol. 1812, no. 8, pp. 1007–1022, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. M. Cabarcas, E. M. Hurt, and W. L. Farrar, “Defining the molecular nexus of cancer, type 2 diabetes and cardiovascular disease,” Current Molecular Medicine, vol. 10, no. 8, pp. 741–755, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Modica, S. Murzilli, L. Salvatore, D. R. Schmidt, and A. Moschetta, “Nuclear bile acid receptor FXR protects against intestinal tumorigenesis,” Cancer Research, vol. 68, no. 23, pp. 9589–9594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. D. Wang, W. D. Chen, M. Wang, D. Yu, B. M. Forman, and W. Huang, “Farnesoid X receptor antagonizes nuclear factor κB in hepatic inflammatory response,” Hepatology, vol. 48, no. 5, pp. 1632–1643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Degirolamo, S. Modica, G. Palasciano, and A. Moschetta, “Bile acids and colon cancer: solving the puzzle with nuclear receptors,” Trends in Molecular Medicine, vol. 10, pp. 564–572, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Adachi, H. Yamamoto, H. Ohashi et al., “A candidate targeting molecule of insulin-like growth factor-I receptor for gastrointestinal cancers,” World Journal of Gastroenterology, vol. 16, no. 46, pp. 5779–5789, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Abe and S. I. Yamagishi, “AGE-RAGE system and carcinogenesis,” Current Pharmaceutical Design, vol. 14, no. 10, pp. 940–945, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Galland, “Diet and inflammation,” Nutrition in Clinical Practice, vol. 25, no. 6, pp. 634–640, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Kalogeropoulos, D. B. Panagiotakos, C. Pitsavos et al., “Unsaturated fatty acids are inversely associated and n-6/n-3 ratios are positively related to inflammation and coagulation markers in plasma of apparently healthy adults,” Clinica Chimica Acta, vol. 411, no. 7-8, pp. 584–591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Mencarelli, E. Distrutti, B. Renga et al., “Probiotics modulate intestinal expression of nuclear receptor and provide counter-regulatory signals to inflammation-driven adipose tissue activation,” PLoS ONE, vol. 6, no. 7, Article ID e22978, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. A. J. Kreeft, C. J. A. Moen, G. Porter et al., “Genomic analysis of the response of mouse models to high-fat feeding shows a major role of nuclear receptors in the simultaneous regulation of lipid and inflammatory genes,” Atherosclerosis, vol. 182, no. 2, pp. 249–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. Charaka Samhita (Text with English translation) Chaukhamba Orientalia, 2000.
  42. Sushruta Samhita (Text with English translation) Chaukhamba Visvabharati, 2000.
  43. M. S. Valiathan, The Legacy of Charaka, Orient Longman, 2003.
  44. B. Prasher, S. Aggarwal, A. K. Mandal et al., “Whole genome expression and biochemical correlates of extreme constitutional types defined in Ayurveda,” Journal of Translational Medicine, vol. 6, pp. 48–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. H. M. Sharma, “Contemporary ayurveda,” in Fundamentals of Complementary and Alternative Medicine, M. S. Micozzi, Ed., pp. 495–508, Saunders Elsevier, St. Louis, Mo, USA, 4th edition, 2011. View at Google Scholar
  46. H. Sharma and H. M. Chandola, “Ayurvedic concept of obesity, metabolic syndrome, and diabetes mellitus,” Journal of Alternative and Complementary Medicine, vol. 17, no. 6, pp. 549–552, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Patwardhan, K. Joshi, and A. Chopra, “Classification of human population based on HLA gene polymorphism and the concept of Prakriti in Ayurveda,” Journal of Alternative and Complementary Medicine, vol. 11, no. 2, pp. 349–353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. R. E. Svoboda, Ayurveda Life Health and Longevity, Penguin Books India, 1992.
  49. P. Balachandran and R. Govindarajan, “Cancer—an ayurvedic perspective,” Pharmacological Research, vol. 51, no. 1, pp. 19–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. R. P. Trivedi, Agni Atisara Grahani Koshtha Vata Prakaranani, Baidyanath, Varanasi, India, 1986.
  51. Y. T. Acharya, “Caraka Samhita,” Chaukhamba Surbharati, Varanasi, India, pp. 150, 1992.
  52. Y. T. Acharya, “Caraka Samhita,” Chaukhamba Surbharati, Varanasi, India, (Chi 15/3-5), pp. 512, 1992.
  53. M. Sahu and L. C. Mishra, Benign Growths, Cysts, and Malignant Tumors. Scientific basis of Ayurvedic Therapies, CRC Press, 2004.
  54. Y. T. Acharya, “Caraka Samhita,” Chaukhamba Surbharati, Varanasi, India, pp. 212, 1992.
  55. J. Mitra, “Ashtanga Samgraha,” Chowkhambha Sanskrit Series Office, Varanasi, India, pp. 168, 2006.
  56. Y. T. Acharya, “Caraka Samhita,” Chaukhamba Surbharati, Varanasi, India, pp. 525, 1992.
  57. L. Galland, “Intestinal toxicity: new approaches to an old problem,” Alternative and Complementary Therapies, vol. 3, pp. 288–295, 1997. View at Google Scholar
  58. A. M. O'Hara and F. Shanahan, “The gut flora as a forgotten organ,” EMBO Reports, vol. 7, no. 7, pp. 688–693, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. T. Acharya, “Caraka Samhita,” Chaukhamba Surbharati, Varanasi, India, pp. 518, 1992.
  60. M. Srinivasulu, “Concept of Ama in Ayurveda,” Choukhambha Sanskrit Series Office, Varanasi, India, 2010.
  61. C. Dwarkanath, “Digestion and Metabolism in Ayurveda,” Chaoukhambha Krishnadas Academy, Varanasi, India, pp. 191, 2010.
  62. V. N. Sumantran, “Cellular chemosensitivity assays: an overview,” Methods in Molecular Biology, vol. 731, pp. 219–236, 2011. View at Google Scholar
  63. G. Musso, R. Gambino, and M. Cassader, “Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded?” Diabetes Care, vol. 33, no. 10, pp. 2277–2284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Song, S. Guha, K. Liu, N. S. Buttar, and R. S. Bresalier, “COX-2 induction by unconjugated bile acids involves reactive oxygen species-mediated signalling pathways in Barrett's oesophagus and oesophageal adenocarcinoma,” Gut, vol. 56, no. 11, pp. 1512–1521, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Shibata, Y. Shimozu, C. Wakita et al., “Lipid peroxidation modification of protein generates Nε-(4-oxononanoyl)lysine as a pro-inflammatory ligand,” Journal of Biological Chemistry, vol. 286, no. 22, pp. 19943–19957, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Bartsch, K. Arab, and J. Nair, “Biomarkers for hazard identification in humans,” Environmental Health, vol. 10, supplement 1, article S11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. G. Riezzo, M. Chiloiro, and F. Russo, “Functional foods: Salient features and clinical applications,” Current Drug Targets, vol. 5, no. 3, pp. 331–337, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Albers, J. M. Antoine, R. Bourdet-Sicard et al., “Markers to measure immunomodulation in human nutrition intervention studies,” British Journal of Nutrition, vol. 94, no. 3, pp. 452–481, 2005. View at Publisher · View at Google Scholar · View at Scopus