Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 342652, 8 pages
http://dx.doi.org/10.1155/2012/342652
Research Article

In Vitro Cytotoxic Potential of Essential Oils of Eucalyptus benthamii and Its Related Terpenes on Tumor Cell Lines

1Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, 632 Prefeito Lothário Meissner Avenida, 80210-170 Curitiba, PR, Brazil
2Research Center for Chemistry, Biology and Agriculture, University of Campinas, P.O. Box 6171, 13081-970 Campinas, SP, Brazil
3Department of Chemistry, Federal University of Paraná, Polytechnic Center, P.O. Box 19081, 81531-990 Curitiba, PR, Brazil
4Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, 4748 Carlos Cavalcanti Avenida, 84030-900 Ponta Grossa, PR, Brazil
5Department of General Biology, State University of Ponta Grossa, 4748 Carlos Cavalcanti Avenida, 84030-900 Ponta Grossa, PR, Brazil

Received 21 December 2011; Revised 21 February 2012; Accepted 24 February 2012

Academic Editor: Y. Ohta

Copyright © 2012 Patrícia Mathias Döll-Boscardin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. I. H. Brooker and D. A. Kleinig, Field Guide to Eucalyptus, Bloomings, Melbourne, Australia, 3rd edition, 2006.
  2. A. Chevallier, Encyclopedia of Medicinal Plants, Dorling Kindersley, St. Leonards, New South Wales, Australia, 2001.
  3. J. Silva, W. Abebe, S. M. Sousa, V. G. Duarte, M. I. L. Machado, and F. J. A. Matos, “Analgesic and anti-inflammatory effects of essential oils of Eucalyptus,” Journal of Ethnopharmacology, vol. 89, no. 2-3, pp. 277–283, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. L. R. Williams, J. K. Stockley, W. Yan, and V. N. Home, “Essential oils with high antimicrobial activity for therapeutic use,” International Journal of Aromatherapy, vol. 8, no. 4, pp. 30–39, 1998. View at Google Scholar · View at Scopus
  5. S. Benyahia, S. Benayache, F. Benayache et al., “Cladocalol, a pentacyclic 28-nor-triterpene from Eucalyptus cladocalyx with cytotoxic activity,” Phytochemistry, vol. 66, no. 6, pp. 627–632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Takasaki, T. Konoshima, H. Etoh, I. P. Singh, H. Tokuda, and H. Nishino, “Cancer chemopreventive activity of euglobal-G1 from leaves of Eucalyptus grandis,” Cancer Letters, vol. 155, no. 1, pp. 61–65, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Ito, M. Koreishi, H. Tokuda, H. Nishino, and T. Yoshida, “Cypellocarpins A-C, phenol glycosides esterified with oleuropeic acid, from Eucalyptus cypellocarpa,” Journal of Natural Products, vol. 63, no. 9, pp. 1253–1257, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. H. M. Ashour, “Antibacterial, antifungal, and anticancer activities of volatile oils and extracts from stems, leaves, and flowers of Eucalyptus sideroxylon and Eucalyptus torquata,” Cancer Biology and Therapy, vol. 7, no. 3, pp. 399–403, 2008. View at Google Scholar · View at Scopus
  9. M. Al-Fatimi, U. Friedrich, and K. Jenett-Siems, “Cytotoxicity of plants used in traditional medicine in Yemen,” Fitoterapia, vol. 76, no. 3-4, pp. 355–358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. NSW—National Parks & Wildlife Service, Threatened species information: Eucalyptus benthamii Maiden and Cambage, National Parks & Wildlife Service, Hurstville, Australia, 2000.
  11. E. M. Costa, “A madeira do eucalipto na indústria moveleira,” in Proceedings of the Anais do IV Semader, Curitiba, Brasil, 1996.
  12. W. M. Ebejer, “Uso de plantas por agricultores familiares,” União da Vitória: Assessoria e Serviços a Projetos em Agricultura Alternativa, 2010.
  13. A. Lucia, L. W. Juan, E. N. Zerba, L. Harrand, M. Marcó, and H. M. Masuh, “Validation of models to estimate the fumigant and larvicidal activity of Eucalyptus essential oils against Aedes aegypti (Diptera: Culicidae),” Parasitology Research. In press. View at Publisher · View at Google Scholar
  14. R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, Allured, Carol Stream, Ill, USA, 4th edition, 2007.
  15. V. M. Virador, N. Kobayashi, J. Matsunaga, and V. J. Hearing, “A standardized protocol for assessing regulators of pigmentation,” Analytical Biochemistry, vol. 270, no. 2, pp. 207–219, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Sylvestre, A. Pichette, A. Longtin, F. Nagau, and J. Legault, “Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L. from Guadeloupe,” Journal of Ethnopharmacology, vol. 103, no. 1, pp. 99–102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Cardile, A. Russo, C. Formisano et al., “Essential oils of Salvia bracteata and Salvia rubifolia from lebanon: chemical composition, antimicrobial activity and inhibitory effect on human melanoma cells,” Journal of Ethnopharmacology, vol. 126, no. 2, pp. 265–272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar · View at Scopus
  19. C. Korzeniewski and D. M. Callewaert, “An enzyme-release assay for natural cytotoxicity,” Journal of Immunological Methods, vol. 64, no. 3, pp. 313–320, 1983. View at Publisher · View at Google Scholar · View at Scopus
  20. D. F. Sellitti, K. Suzuki, S. Q. Doi et al., “Thyroglobulin increases cell proliferation and suppresses Pax-8 in mesangial cells,” Biochemical and Biophysical Research Communications, vol. 285, no. 3, pp. 795–799, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. E. K. Gras, J. Read, C. T. Mach, G. D. Sanson, and F. J. Clissold, “Herbivore damage, resource richness and putative defences in juvenile versus adult Eucalyptus leaves,” Australian Journal of Botany, vol. 53, no. 1, pp. 33–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. S. Mahmoud and R. B. Croteau, “Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 15, pp. 8915–8920, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. Y.-H. Tian, X.-M. Liu, Y.-H. Zhou, and R.-H. Qin, “Chemical composition of essential oils of leaves from Eucalyptus camaldulensis and Eucalyptus benthamii,” Jingxi Huagong, vol. 22, no. 12, pp. 920–923, 2005. View at Google Scholar
  24. P. H. M. Silva, J. O. Brito, and F. G. Silva Jr., “Potential of eleven Eucalyptus species for the production of essential oils,” Scientia Agricola, vol. 63, no. 1, pp. 85–89, 2006. View at Google Scholar · View at Scopus
  25. A. J. Mossi, V. Astolfi, G. Kubiak et al., “Insecticidal and repellency activity of essential oil of Eucalyptus sp. against Sitophilus zeamais motschulsky (Coleoptera, Curculionidae),” Journal of the Science of Food and Agriculture, vol. 91, no. 2, pp. 273–277, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Elaissi, K. H. Salah, S. Mabrouk, K. M. Larbi, R. Chemli, and F. Harzallah-Skhiri, “Antibacterial activity and chemical composition of 20 Eucalyptus species' essential oils,” Food Chemistry, vol. 129, pp. 1427–1434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Gairola, V. Gupta, P. Bansal, R. Singh, and M. Maithani, “Herbal antitussives and expectorants—a review,” International Journal of Pharmaceutical Sciences Review and Research, vol. 5, no. 2, pp. 5–9, 2010. View at Google Scholar · View at Scopus
  28. F. Bakkali, S. Averbeck, D. Averbeck, and M. Idaomar, “Biological effects of essential oils—a review,” Food and Chemical Toxicology, vol. 46, no. 2, pp. 446–475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Richter and J. Schlegel, “Mitochondrial calcium release induced by prooxidants,” Toxicology Letters, vol. 67, no. 1–3, pp. 119–127, 1993. View at Google Scholar · View at Scopus
  30. S. A. Novgorodov and T. I. Gudz, “Permeability transition pore of the inner mitochondrial membrane can operate in two open states with different selectivities,” Journal of Bioenergetics and Biomembranes, vol. 28, no. 2, pp. 139–146, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. A. E. Vercesi, A. J. Kowaltowski, M. T. Grijalba, A. R. Meinicke, and R. F. Castilho, “The role of reactive oxygen species in mitochondrial permeability transition,” Bioscience Reports, vol. 17, no. 1, pp. 43–52, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. A. C. De Sousa, D. S. Alviano, A. F. Blank, P. B. Alves, C. S. Alviano, and C. R. Gattas, “Melissa officinalis L. Essential oil: antitumoral and antioxidant activities,” Journal of Agricultural and Food Chemistry, vol. 52, no. 9, pp. 2485–2489, 2004. View at Google Scholar
  33. A. Leite, E. Lima, E. Souza, M. Diniz, V. Trajano, and I. Medeiros, “Inhibitory effect of β-pinene, α-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria,” Revista Brasileira de Ciencias Farmaceuticas, vol. 43, no. 1, pp. 121–126, 2007. View at Google Scholar · View at Scopus
  34. C. D. Merck, The Merck Index: an Encyclopedia of Chemicals, Drugs and Biologycals, Merck & Co., Rahway, NJ, USA, 13th edition, 2001.
  35. W. N. Setzer, M. C. Setzer, D. M. Moriarity, R. B. Bates, and W. A. Haber, “Biological activity of the essential oil of Myrcianthes sp. nov. black fruit from monteverde, costa rica,” Planta Medica, vol. 65, no. 5, pp. 468–469, 1999. View at Google Scholar · View at Scopus
  36. M. Y. Dar, W. A. Shah, M. A. Rather, Y. Qurishi, A. Hamid, and M. A. Qurishi, “Chemical composition, in vitro cytotoxic and antioxidant activities of the essential oil and major constituents of Cymbopogon jawarancusa (Kashmir),” Food Chemistry, vol. 129, no. 4, pp. 1606–1611, 2011. View at Publisher · View at Google Scholar
  37. M. R. Loizzo, R. Tundis, F. Menichini, A. M. Saab, G. A. Statti, and F. Menichini, “Antiproliferative effects of essential oils and their major constituents in human renal adenocarcinoma and amelanotic melanoma cells,” Cell Proliferation, vol. 41, no. 6, pp. 1002–1012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Y. Zhou, F. D. Tang, G. G. Mao, and R. L. Bian, “Effect of α-pinene on nuclear translocation of nf-κb in THP-1 cells,” Acta Pharmacologica Sinica, vol. 25, no. 4, pp. 480–484, 2004. View at Google Scholar · View at Scopus
  39. R. M. Romeilah, “Anticancer and antioxidant activities of Matricaria chamomilla L. and Marjorana hortensis essential oils,” Research Journal of Medicine and Medical Sciences, vol. 4, pp. 332–339, 2009. View at Google Scholar
  40. S. Bourgou, A. Pichette, B. Marzouk, and J. Legault, “Bioactivities of black cumin essential oil and its main terpenes from Tunisia,” South African Journal of Botany, vol. 76, no. 2, pp. 210–216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Astani, J. Reichling, and P. Schnitzler, “Comparative study on the antiviral activity of selected monoterpenes derived from essential oils,” Phytotherapy Research, vol. 24, no. 5, pp. 673–679, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. D. Cha, M. R. Jeong, S. I. Jeong et al., “Chemical composition and antimicrobial activity of the essential oil of Cryptomeria japonica,” Phytotherapy Research, vol. 21, no. 3, pp. 295–299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Barra, V. Coroneo, S. Dessi, P. Cabras, and A. Angioni, “Characterization of the volatile constituents in the essential oil of Pistacia lentiscus L. from different origins and its antifungal and antioxidant activity,” Journal of Agricultural and Food Chemistry, vol. 55, no. 17, pp. 7093–7098, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. D. E. Wedge, N. Tabanca, B. J. Sampson et al., “Antifungal and insecticidal activity of two juniperus essential oils,” Natural Product Communications, vol. 4, no. 1, pp. 123–127, 2009. View at Google Scholar · View at Scopus
  45. B. Zúñiga, P. Guevara-Fefer, J. Herrera et al., “Chemical composition and anti-inflammatory activity of the volatile fractions from the bark of eight mexican Bursera species,” Planta Medica, vol. 71, no. 9, pp. 825–828, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. S. J. Greay, D. J. Ireland, H. T. Kissick et al., “Induction of necrosis and cell cycle arrest in murine cancer cell lines by Melaleuca alternifolia (tea tree) oil and terpinen-4-ol,” Cancer Chemotherapy and Pharmacology, vol. 65, no. 5, pp. 877–888, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Calcabrini, A. Stringaro, L. Toccacieli et al., “Terpinen-4-ol, the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells,” The Journal of Investigative Dermatology, vol. 122, no. 2, pp. 349–360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. C.-S. Wu, Y.-J. Chen, J. J. W. Chen et al., “Terpinen-4-ol induces apoptosis in human nonsmall cell lung cancer in vitro and in vivo,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 818261, 13 pages, 2012. View at Publisher · View at Google Scholar
  49. A. J. Hayes, D. N. Leach, J. L. Markham, and B. Markovic, “In vitro cytotoxicity of Australian tea tree oil using human cell lines,” Journal of Essential Oil Research, vol. 9, no. 5, pp. 15–16, 1997. View at Google Scholar · View at Scopus
  50. G. Bozzuto, M. Colone, L. Toccacieli, A. Stringaro, and A. Molinari, “Tea tree oil might combat melanoma,” Planta Medica, vol. 77, no. 1, pp. 54–56, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Allan, “Poisoning by oil of Eucalyptus,” British Medical Journal, vol. 1, p. 569, 1910. View at Google Scholar
  52. W. E. Foggie, “Eucalyptus oil poisoning,” British Medical Journal, vol. 1, pp. 359–360, 2011. View at Google Scholar
  53. R. C. Hindle, “Eucalyptus oil ingestion,” New Zealand Medical Journal, vol. 107, no. 977, pp. 185–186, 1994. View at Google Scholar · View at Scopus
  54. T. Darben, B. Cominos, and C. T. Lee, “Topical Eucalyptus oil poisoning,” Australasian Journal of Dermatology, vol. 39, no. 4, pp. 265–267, 1998. View at Google Scholar