Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 349040, 13 pages
http://dx.doi.org/10.1155/2012/349040
Review Article

Greco-Arab and Islamic Herbal-Derived Anticancer Modalities: From Tradition to Molecular Mechanisms

1Qasemi Research Center, Al-Qasemi Academy, P.O. Box 124, Baqa El-Gharbia 30100, Israel
2Faculty of Arts and Sciences, Arab American University Jenin, P.O. Box 240, Jenin, Palestine
3Technion—Israel Institute of Technology, Middle East Cancer Consortium, Haifa, Israel
4Integrative Oncology Program, The Oncology Service, Lin Medical Center, Clalit Health Services, Western Galilee District, Haifa, Israel
5Complementary and Traditional Medicine Unit, Department of Family Medicine, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel and Clalit Health Services, Western Galilee District, Haifa, Israel

Received 17 July 2011; Accepted 26 September 2011

Academic Editor: Fatma U. Afifi

Copyright © 2012 Hilal Zaid et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Saad and O. Said, Greco-Arab and Islamic Herbal Medicine: Traditional System, Ethics, Safety, Efficacy and Regulatory Issues, Wiley-Blackwell John Wiley & Sons, 2011.
  2. B. Saad, H. Azaizeh, and O. Said, “Arab herbal medicine,” Botanical Medicine in Clinical Practice, vol. 4, p. 31, 2008. View at Google Scholar
  3. M. S. Ali-Shtayeh, R. M. Jamous, J. H. Al-Shafie' et al., “Traditional knowledge of wild edible plants used in Palestine (Northern West Bank): a comparative study,” Journal of Ethnobiology and Ethnomedicine, vol. 4, article 13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Toni, E. Flamini, L. Mercatali, E. Sacanna, P. Serra, and D. Amadori, “Pathogenesis of osteoblastic bone metastases from prostate cancer,” Cancer, vol. 116, no. 6, pp. 1406–1418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Ben-Arye, M. S. Ali-Shtayeh, M. Nejmi et al., “Integrative oncology research in the Middle East: weaving traditional and complementary medicine in supportive care,” Supportive Care in Cancer. In press. View at Publisher · View at Google Scholar
  6. F. Tas, Z. Ustuner, G. Can et al., “The prevalence and determinants of the use of complementary and alternative medicine in adult Turkish cancer patients,” Acta Oncologica, vol. 44, no. 2, pp. 161–167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Ben-Arye, G. Bar-Sela, M. Frenkel, A. Kuten, and D. Hermoni, “Is a biopsychosocial-spiritual approach relevant to cancer treatment? A study of patients and oncology staff members on issues of complementary medicine and spirituality,” Supportive Care in Cancer, vol. 14, no. 2, pp. 147–152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Ernst and B. R. Cassileth, “The prevalence of complementary/alternative medicine in cancer: a systematic review,” Cancer, vol. 83, no. 4, pp. 777–782, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. F. U. Afifi, M. Wazaify, M. Jabr, and E. Treish, “The use of herbal preparations as complementary and alternative medicine (CAM) in a sample of patients with cancer in Jordan,” Complementary Therapies in Clinical Practice, vol. 16, no. 4, pp. 208–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Montazeri, A. Sajadian, M. Ebrahimi, S. Haghighat, and I. Harirchi, “Factors predicting the use of complementary and alternative therapies among cancer patients in Iran,” European Journal of Cancer Care, vol. 16, no. 2, pp. 144–149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. E. Genc, S. Senol, A. S. Turgay, and M. Kantar, “Complementary and alternative medicine used by pediatric patients with cancer in western Turkey,” Oncology Nursing Forum, vol. 36, no. 3, pp. E159–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Yildirim, S. Tinar, S. Yorgun et al., “The use of complementary and alternative medicine (CAM) therapies by Turkish women with gynecological cancer,” European Journal of Gynaecological Oncology, vol. 27, no. 1, pp. 81–85, 2006. View at Google Scholar · View at Scopus
  13. O. Paltiel, M. Avitzour, T. Peretz et al., “Determinants of the use of complementary therapies by patients with cancer,” Journal of Clinical Oncology, vol. 19, no. 9, pp. 2439–2448, 2001. View at Google Scholar · View at Scopus
  14. O. Tarhan, A. Alacacioglu, I. Somali et al., “Complementary-alternative medicine among cancer patients in the western region of Turkey,” Journal of B.U.ON., vol. 14, no. 2, pp. 265–269, 2009. View at Google Scholar · View at Scopus
  15. E. Ben-Arye, E. Lev, and E. Schiff, “Complementary medicine oncology research in the Middle-East: shifting from traditional to integrative cancer care,” European Journal of Integrative Medicine, vol. 3, no. 1, pp. 29–37, 2011. View at Publisher · View at Google Scholar
  16. A. H. Avi Senna, AlKanoon Fi Altib (The Rules of Medicine), Iz Aldin Publications, Beirut, Lebanon, 1993.
  17. Rhazes, AlHawy (The Comprehensive), Dar AlKalam Publishing, Beirut, Lebanon, 925.
  18. P. K. Hitti, History of the Arab, Mac Millan St. Martin's Press, 1970.
  19. J. O. A. AlTurkimany, AlMoatamad Fi Aladweah Almofradah, The Source of the Single Pharmaceuticals, Dar AlKalam Publishing, Beirut, Lebanon, 1993.
  20. D. A. M. Ibn AlBitar, AlJame Li-Mofradat al Adwiyah wal Aghthiyah (The Collection of Medical and Food Items), Dar Sader Publishing, Beirut, Lebanon, 1874.
  21. M. K. D. Al-Turki, Prophet's Medicine, vol. 2, Dar Ibn Hazm, 2006.
  22. E. P. Lansky, H. M. Paavilainen, A. D. Pawlus, and R. A. Newman, “Ficus spp. (fig): ethnobotany and potential as anticancer and anti-inflammatory agents,” Journal of Ethnopharmacology, vol. 119, no. 2, pp. 195–213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Volanis, T. Kadiyska, A. Galanis, D. Delakas, S. Logotheti, and V. Zoumpourlis, “Environmental factors and genetic susceptibility promote urinary bladder cancer,” Toxicology Letters, vol. 193, no. 2, pp. 131–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. A. Brown and E. R. Simpson, “Obesity and breast cancer: progress to understanding the relationship,” Cancer Research, vol. 70, no. 1, pp. 4–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. B. F. Fuemmeler, M. K. Pendzich, and K. P. Tercyak, “Weight, dietary behavior, and physical activity in childhood and adolescence: implications for adult cancer risk,” Obesity Facts, vol. 2, no. 3, pp. 179–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Jeambey, T. Johns, S. Talhouk, and M. Batal, “Perceived health and medicinal properties of six species of wild edible plants in north-east lebanon,” Public Health Nutrition, vol. 12, no. 10, pp. 1902–1911, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. L. E. Grivetti and B. M. Ogle, “Value of traditional foods in meeting macro- and micronutrient needs: the wild plant connection,” Nutrition Research Reviews, vol. 13, no. 1, pp. 31–46, 2000. View at Google Scholar · View at Scopus
  28. T. Oyama, Y. Yasui, S. Sugie, M. Koketsu, K. Watanabe, and T. Tanaka, “Dietary tricin suppresses inflammation-related colon carcinogenesis in male Crj: CD-1 mice,” Cancer Prevention Research, vol. 2, no. 12, pp. 1031–1038, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Amin, H. Gali-Muhtasib, M. Ocker, and R. Schneider-Stock, “Overview of major classes of plant-derived anticancer drugs,” International Journal of Biomedical Science, vol. 5, no. 1, pp. 1–11, 2009. View at Google Scholar · View at Scopus
  30. H. Zaid, A. Rayan, O. Said, and B. Saad, “Cancer treatment by Greco-Arab and Islamic herbal medicine,” The Open Nutraceuticals Journal, vol. 3, pp. 203–213, 2010. View at Google Scholar
  31. B. Challier, J. M. Perarnau, and J. F. Viel, “Garlic, onion and cereal fibre as protective factors for breast cancer: a French case-control study,” European Journal of Epidemiology, vol. 14, no. 8, pp. 737–747, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. A. V. Khan, Avicenna (Ibn Sina): Muslim Physician and Philosopher of the Eleventh Century (Great Muslim Philosophers and Scientists of the Middle Ages), The Rosen Publishing Group, 2006.
  33. J. M. Chan, F. Wang, and E. A. Holly, “Vegetable and fruit intake and pancreatic cancer in a population-based case-control study in the San Francisco Bay Area,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 9, pp. 2093–2097, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. H. Omar, “Olive: native of Mediterranean region and Health benefits,” Pharmacognosy Reviews, vol. 2, no. 3, pp. 135–142, 2008. View at Google Scholar
  35. O. Said, S. Fulder, K. Khalil, H. Azaizeh, E. Kassis, and B. Saad, “Maintaining a physiological blood glucose level with 'glucolevel', a combination of four anti-diabetes plants used in the traditional Arab herbal medicine,” Evidence-based Complementary and Alternative Medicine, vol. 5, no. 4, pp. 421–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Zaid and B. Saad, “State of the art of diabetes treatment in Greco-Arab and islamic medicine,” Bioactive Foods in Chronic Disease States. In press.
  37. R. W. Owen, A. Giacosa, W. E. Hull, R. Haubner, B. Spiegelhalder, and H. Bartsch, “The antioxidant/anticancer potential of phenolic compounds isolated from olive oil,” European Journal of Cancer, vol. 36, no. 10, pp. 1235–1247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Andreadou, F. Sigala, E. K. Iliodromitis et al., “Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress,” Journal of Molecular and Cellular Cardiology, vol. 42, no. 3, pp. 549–558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Han, T. P. N. Talorete, P. Yamada, and H. Isoda, “Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells,” Cytotechnology, vol. 59, no. 1, pp. 45–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. E. S. R. de Cassia da Silveira and M. de Oliveira Guerra, “Reproductive toxicity of lapachol in adult male wistar rats submitted to short-term treatment,” Phytotherapy Research, vol. 21, no. 7, pp. 658–662, 2007. View at Publisher · View at Google Scholar
  41. V. Goulas, V. Exarchou, A. N. Troganis et al., “Phytochemicals in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells,” Molecular Nutrition and Food Research, vol. 53, no. 5, pp. 600–608, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Fabiani, A. De Bartolomeo, P. Rosignoli et al., “Virgin olive oil phenols inhibit proliferation of human promyelocytic leukemia cells (HL60) by inducing apoptosis and differentiation,” Journal of Nutrition, vol. 136, no. 3, pp. 614–619, 2006. View at Google Scholar · View at Scopus
  43. N. Dudai, Y. Weinstein, M. Krup, T. Rabinski, and R. Ofir, “Citral is a new inducer of caspase-3 in tumor cell lines,” Planta Medica, vol. 71, no. 5, pp. 484–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. F. I. Abdullaev and J. J. Espinosa-Aguirre, “Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials,” Cancer Detection and Prevention, vol. 28, no. 6, pp. 426–432, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. D. G. Chryssanthi, P. G. Dedes, N. K. Karamanos, P. Cordopatis, and F. N. Lamari, “Crocetin inhibits invasiveness of MDA-MB-231 breast cancer cells via downregulation of matrix metalloproteinases,” Planta Medica, vol. 77, no. 2, pp. 146–151, 2011. View at Publisher · View at Google Scholar
  46. G. Kuttan, K. B. Hari Kumar, C. Guruvayoorappan, and R. Kuttan, “Antitumor, anti-invasion, and antimetastatic effects of curcumin,” Advances in Experimental Medicine and Biology, vol. 595, pp. 173–184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. S. C. Gupta, J. H. Kim, S. Prasad, and B. B. Aggarwal, “Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals,” Cancer and Metastasis Reviews, vol. 29, no. 3, pp. 405–434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. P. P. Wu, H. W. Chung, K. C. Liu et al., “Diallyl sulfide induces cell cycle arrest and apoptosis in HeLa human cervical cancer cells through the p53, caspase- and mitochondria-dependent pathways,” International Journal of Oncology, vol. 38, no. 6, pp. 1605–1613, 2011. View at Publisher · View at Google Scholar
  49. B. B. Aggarwal and S. Shishodia, “Molecular targets of dietary agents for prevention and therapy of cancer,” Biochemical Pharmacology, vol. 71, no. 10, pp. 1397–1421, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. J. L. Slavin, “Mechanisms for the impact of whole grain foods on cancer risk,” Journal of the American College of Nutrition, vol. 19, no. 3, 2000. View at Google Scholar · View at Scopus
  51. H. Qu, R. L. Madl, D. J. Takemoto, R. C. Baybutt, and W. Wang, “Lignans are involved in the antitumor activity of wheat bran in colon cancer SW480 cells,” Journal of Nutrition, vol. 135, no. 3, pp. 598–602, 2005. View at Google Scholar · View at Scopus
  52. I. T. Johnson, G. Williamson, and S. R. Musk, “Anticarcinogenic factors in plant foods: a new class of nutrients?” Nutrition Research Reviews, vol. 7, pp. 175–204, 1994. View at Google Scholar · View at Scopus
  53. P. N. Simon, A. Chaboud, N. Darbour et al., “Modulation of cancer cell multidrug resistance by an extract of Ficus citrifolia,” Anticancer Research, vol. 21, no. 2, pp. 1023–1028, 2001. View at Google Scholar · View at Scopus
  54. X. M. Yang, W. Yu, Z. P. Ou, H. L. Ma, W. M. Liu, and X. L. Ji, “Antioxidant and immunity activity of water extract and crude polysaccharide from Ficus carica L. fruit,” Plant Foods for Human Nutrition, vol. 64, no. 2, pp. 167–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. B. L. Pool-Zobel, “Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data,” British Journal of Nutrition, vol. 93, pp. S73–S90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Anter, Z. Fernández-Bedmar, M. Villatoro-Pulido et al., “A pilot study on the DNA-protective, cytotoxic, and apoptosis-inducing properties of olive-leaf extracts,” Mutation Research, vol. 723, no. 2, pp. 165–170, 2011. View at Publisher · View at Google Scholar
  57. M. Albrecht, W. Jiang, J. Kumi-Diaka et al., “Pomegranate extracts potently suppress proliferation, xenograft growth, and invasion of human prostate cancer cells,” Journal of Medicinal Food, vol. 7, no. 3, pp. 274–283, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. V. M. Adhami and H. Mukhtar, “Polyphenols from green tea and pomegranate for prevention of prostate cancer,” Free Radical Research, vol. 40, no. 10, pp. 1095–1104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. K. V. Hirpara, P. Aggarwal, A. J. Mukherjee, N. J. Joshi, and A. C. Burman, “Quercetin and its derivatives: synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bio-availability,” Anti-Cancer Agents in Medicinal Chemistry, vol. 9, no. 2, pp. 138–161, 2009. View at Google Scholar · View at Scopus
  60. P. Bulzomi, P. Galluzzo, A. Bolli, S. Leone, F. Acconcia, and M. Marino, “The pro-apoptotic effect of quercetin in cancer cell lines requires ERbeta-dependent signals,” Journal of Cellular Physiology. In press.
  61. M. K. Shanmugam, R. Kannaiyan, and G. Sethi, “Targeting cell signaling and apoptotic pathways by dietary agents: role in the prevention and treatment of cancer,” Nutrition and Cancer, vol. 63, no. 2, pp. 161–173, 2011. View at Publisher · View at Google Scholar
  62. W. Li, D. Mu, L. Song et al., “Molecular mechanism of silymarin-induced apoptosis in a highly metastatic lung cancer cell line Anip973,” Cancer Biotherapy and Radiopharmaceuticals, vol. 26, no. 3, pp. 317–324, 2011. View at Publisher · View at Google Scholar
  63. K. Ravichandran, B. Velmurugan, M. Gu, R. P. Singh, and R. Agarwal, “Inhibitory effect of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice,” Clinical Cancer Research, vol. 16, no. 18, pp. 4595–4606, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Li, P. Rajendran, and G. Sethi, “Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway,” British Journal of Pharmacology, vol. 161, no. 3, pp. 541–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. A. R. Hussain, M. Ahmed, S. Ahmed et al., “Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma,” Free Radical Biology and Medicine, vol. 50, no. 8, pp. 978–987, 2011. View at Publisher · View at Google Scholar
  66. S. Banerjee, S. Padhye, A. Azmi et al., “Review on molecular and therapeutic potential of thymoquinone in cancer,” Nutrition and Cancer, vol. 62, no. 7, pp. 938–946, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. S. K. El-Desouky, H. K. Ki, Y. R. Shi, A. F. Eweas, A. M. Gamal-Eldeen, and Y. K. Kim, “A new pyrrole alkaloid isolated from Arum palaestinum Boiss. and its biological activities,” Archives of Pharmacal Research, vol. 30, no. 8, pp. 927–931, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Pichichero, R. Cicconi, M. Mattei, M. G. Muzi, and A. Canini, “Acacia honey and chrysin reduce proliferation of melanoma cells through alterations in cell cycle progression,” International Journal of Oncology, vol. 37, no. 4, pp. 973–981, 2010. View at Publisher · View at Google Scholar
  69. M. Mandal and S. K. Jaganathan, “Antiproliferative effects of honey and of its polyphenols: a review,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 830616, 2009. View at Publisher · View at Google Scholar
  70. K. J. Woo, Y. J. Jeong, J. W. Park, and T. K. Kwon, “Chrysin-induced apoptosis is mediated through caspase activation and Akt inactivation in U937 leukemia cells,” Biochemical and Biophysical Research Communications, vol. 325, no. 4, pp. 1215–1222, 2004. View at Publisher · View at Google Scholar
  71. D. Zohary and M. Hopf, Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile Valley, Oxford University Press, 3rd edition, 2007.
  72. D. Musa, N. Dilsiz, H. Gumushan, G. Ulakoglu, and M. Bitiren, “Antitumor activity of an ethanol extract of Nigella sativa seeds,” Biologia, vol. 59, no. 6, pp. 735–740, 2004. View at Google Scholar · View at Scopus
  73. M. L. Salem, “Immunomodulatory and therapeutic properties of the Nigella sativa L. seed,” International Immunopharmacology, vol. 5, no. 13-14, pp. 1749–1770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. H. Gali-Muhtasib, M. Diab-Assaf, C. Boltze et al., “Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism,” International Journal of Oncology, vol. 25, no. 4, pp. 857–866, 2004. View at Google Scholar · View at Scopus
  75. H. U. Gali-Muhtasib, W. G. Abou Kheir, L. A. Kheir, N. Darwiche, and P. A. Crooks, “Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes,” Anti-Cancer Drugs, vol. 15, no. 4, pp. 389–399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. H. Gali-Muhtasib, A. Roessner, and R. Schneider-Stock, “Thymoquinone: a promising anti-cancer drug from natural sources,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 8, pp. 1249–1253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. T. Yi, S. G. Cho, Z. Yi et al., “Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways,” Molecular Cancer Therapeutics, vol. 7, no. 7, pp. 1789–1796, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. K. H. Tennekoon, S. Jeevathayaparan, A. P. Kurukulasooriya, and E. H. Karunanayake, “Possible hepatotoxicity of Nigella sativa seeds and Drega volubilis leaves,” Journal of Ethnopharmacology, vol. 31, no. 3, pp. 283–289, 1991. View at Google Scholar · View at Scopus
  79. A. Zaoui, Y. Cherrah, N. Mahassini, K. Alaoui, H. Amarouch, and M. Hassar, “Acute and chronic toxicity of Nigella sativa fixed oil,” Phytomedicine, vol. 9, no. 1, pp. 69–74, 2002. View at Google Scholar · View at Scopus
  80. E. I. Salim and S. Fukushima, “Chemopreventive potential of volatile oil from black cumin (Nigella sativa L.) seeds against rat colon carcinogenesis,” Nutrition and Cancer, vol. 45, no. 2, pp. 195–202, 2003. View at Google Scholar · View at Scopus
  81. M. A. Mansour, O. T. Ginawi, T. El-Hadiyah, A. S. El-Khatib, O. A. Al-Shabanah, and H. A. Al-Sawaf, “Effects of volatile oil constituents of Nigella sativa on carbon tetrachloride-induced hepatotoxicity in mice: evidence for antioxidant effects of thymoquinone,” Research Communications in Molecular Pathology and Pharmacology, vol. 110, no. 3-4, pp. 239–251, 2001. View at Google Scholar
  82. F. I. Abdullaev, “Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.),” Experimental Biology and Medicine, vol. 227, no. 1, pp. 20–25, 2002. View at Google Scholar · View at Scopus
  83. I. Das, S. Das, and T. Saha, “Saffron suppresses oxidative stress in DMBA-induced skin carcinoma: a histopathological study,” Acta Histochemica, vol. 112, no. 4, pp. 317–327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. S. C. Nair, B. Pannikar, and K. R. Panikkar, “Antitumour activity of saffron (Crocus sativus),” Cancer Letters, vol. 57, no. 2, pp. 109–114, 1991. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Amin, A. A. Hamza, K. Bajbouj, S. S. Ashraf, and S. Daoud, “Saffron: a potential candidate for a novel anticancer drug against hepatocellular carcinoma,” Hepatology, vol. 54, no. 3, pp. 857–867, 2011. View at Publisher · View at Google Scholar
  86. W. G. Gutheil, G. Reed, A. Ray, and A. Dhar, “Crocetin: an agent derived from saffron for prevention and therapy for cancer,” Current Pharmaceutical Biotechnology. In press.
  87. R. Yang, K. Vernon, A. Thomas, D. Morrison, N. Qureshi, and C. W. Van Way III, “Crocetin reduces activation of hepatic apoptotic pathways and improves survival in experimental hemorrhagic shock,” Journal of Parenteral and Enteral Nutrition, vol. 35, no. 1, pp. 107–113, 2011. View at Publisher · View at Google Scholar
  88. V. Magesh, J. P. Vijeya Singh, K. Selvendiran, G. Ekambaram, and D. Sakthisekaran, “Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies,” Molecular and Cellular Biochemistry, vol. 287, no. 1-2, pp. 127–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Dhar, S. Mehta, G. Dhar et al., “Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model,” Molecular Cancer Therapeutics, vol. 8, no. 2, pp. 315–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. D. G. Chryssanthi, F. N. Lamari, G. Iatrou, A. Pylara, N. K. Karamanos, and P. Cordopatis, “Inhibition of breast cancer cell proliferation by style constituents of different crocus species,” Anticancer Research, vol. 27, no. 1 A, pp. 357–362, 2007. View at Google Scholar · View at Scopus
  91. A. J. Pantuck, J. T. Leppert, N. Zomorodian et al., “Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer,” Clinical Cancer Research, vol. 12, no. 13, pp. 4018–4026, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. E. P. Lansky and R. A. Newman, “Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer,” Journal of Ethnopharmacology, vol. 109, no. 2, pp. 177–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Jurenka, “Therapeutic applications of pomegranate (Punica granatum L.): a review,” Alternative Medicine Review, vol. 13, no. 2, pp. 128–144, 2008. View at Google Scholar · View at Scopus
  94. E. P. Lansky, W. Jiang, H. Mo et al., “Possible synergistic prostate cancer suppression by anatomically discrete pomegranate fractions,” Investigational New Drugs, vol. 23, no. 1, pp. 11–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Malik and H. Mukhtar, “Prostate cancer prevention through pomegranate fruit,” Cell Cycle, vol. 5, no. 4, pp. 371–373, 2006. View at Google Scholar · View at Scopus
  96. L. S. Adams, N. P. Seeram, B. B. Aggarwal, Y. Takada, D. Sand, and D. Heber, “Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells,” Journal of Agricultural and Food Chemistry, vol. 54, no. 3, pp. 980–985, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. N. Khan, F. Afaq, M. H. Kweon, K. Kim, and H. Mukhtar, “Oral consumption of pomegranate fruit extract inhibits growth and progression of primary lung tumors in mice,” Cancer Research, vol. 67, no. 7, pp. 3475–3482, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. V. M. Adhami, N. Khan, and H. Mukhtar, “Cancer chemoprevention by pomegranate: laboratory and clinical evidence,” Nutrition and Cancer, vol. 61, no. 6, pp. 811–815, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. E. Hornung, C. Pernstich, and I. Feussner, “Formation of conjugated Δ11 Δ13-double bonds by Δ12-linoleic acid (1,4)-acyl-lipid-desaturase in pomegranate seeds,” European Journal of Biochemistry, vol. 269, no. 19, pp. 4852–4859, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. R. F. Wang, W. D. Xie, Z. Zhang et al., “Bioactive compounds from the seeds of Punica granatum (pomegranate),” Journal of Natural Products, vol. 67, no. 12, pp. 2096–2098, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. R. Mehta and E. P. Lansky, “Breast cancer chemopreventive properties of pomegranate (Punica granatum) fruit extracts in a mouse mammary organ culture,” European Journal of Cancer Prevention, vol. 13, no. 4, pp. 345–348, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Kohno, R. Suzuki, Y. Yasui, M. Hosokawa, K. Miyashita, and T. Tanaka, “Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats,” Cancer Science, vol. 95, no. 6, pp. 481–486, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. J. J. Hora, E. R. Maydew, E. P. Lansky, and C. Dwivedi, “Chemopreventive effects of pomegranate seed oil on skin tumor development in CD1 mice,” Journal of Medicinal Food, vol. 6, no. 3, pp. 157–161, 2003. View at Google Scholar · View at Scopus
  104. N. D. Kim, R. Mehta, W. Yu et al., “Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer,” Breast Cancer Research and Treatment, vol. 71, no. 3, pp. 203–217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Toi, H. Bando, C. Ramachandran et al., “Preliminary studies on the anti-angiogenic potential of pomegranate fractions in vitro and in vivo,” Angiogenesis, vol. 6, no. 2, pp. 121–128, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Dikmen, N. Ozturk, and Y. Ozturk, “The antioxidant potency of Punica granatum L. fruit peel reduces cell proliferation and induces apoptosis on breast cancer,” Journal of Medicinal Food. In press.
  107. D. Bagchi, C. K. Sen, M. Bagchi, and M. Atalay, “Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula,” Biochemistry (Moscow), vol. 69, no. 1, pp. 75–80, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. D. X. Hou, T. Ose, S. Lin et al., “Anthocyanidins induce apoptosis in human promyelocytic leukemia cells: structure-activity relationship and mechanisms involved,” International Journal of Oncology, vol. 23, no. 3, pp. 705–712, 2003. View at Google Scholar
  109. J. H. Yang, T. C. Hsia, H. M. Kuo et al., “Inhibition of lung cancer cell growth by quercetin glucuronides via G 2/M arrest and induction of apoptosis,” Drug Metabolism and Disposition, vol. 34, no. 2, pp. 296–304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. M. H. Park and D. S. Min, “Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells,” Biochemical and Biophysical Research Communications, vol. 412, no. 4, pp. 710–715, 2011. View at Publisher · View at Google Scholar
  111. L. Gibellini, M. Pinti, M. Nasi et al., “Quercetin and cancer chemoprevention,” Evidence-based Complementary and Alternative Medicine, vol. 2011, Article ID 591356, 2011. View at Publisher · View at Google Scholar
  112. D. N. Syed, F. Afaq, and H. Mukhtar, “Pomegranate derived products for cancer chemoprevention,” Seminars in Cancer Biology, vol. 17, no. 5, pp. 377–385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. V. Exarchou, Y. C. Fiamegos, T. A. van Beek, C. Nanos, and J. Vervoort, “Hyphenated chromatographic techniques for the rapid screening and identification of antioxidants in methanolic extracts of pharmaceutically used plants,” Journal of Chromatography A, vol. 1112, no. 1-2, pp. 293–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. I. Durak, H. Biri, E. Devrim, S. Sözen, and A. Avci, “Aqueous extract of Urtica Dioica makes significant inhibition on adenosine deaminase activity in prostate tissue from patients with prostate cancer,” Cancer Biology and Therapy, vol. 3, no. 9, pp. 855–857, 2004. View at Google Scholar · View at Scopus
  115. L. Konrad, H. H. Müller, C. Lenz, H. Laubinger, G. Aumüller, and J. J. Lichius, “Antiproliferative effect on human prostate cancer cells by a stinging nettle root (Urtica dioica) extract,” Planta Medica, vol. 66, no. 1, pp. 44–47, 2000. View at Publisher · View at Google Scholar · View at Scopus
  116. J. A. Milner, “Garlic: its anticarcinogenic and antitumorigenic properties,” Nutrition Reviews, vol. 54, no. 11, pp. S82–S86, 1996. View at Google Scholar · View at Scopus
  117. X. Mei, M. C. Wang, H. X. Xu et al., “Garlic and gastric cancer-the effect of garlic on nitrite and nitrate in gastric juice,” Acta Nutrimenta Sinica, vol. 4, pp. 53–56, 1982. View at Google Scholar
  118. T. Takezaki, C. M. Gao, J. H. Ding, T. K. Liu, M. S. Li, and K. Tajima, “Comparative study of lifestyles of residents in high and low risk areas for gastric cancer in Jiangsu Province, China; with special reference to allium vegetables,” Journal of Epidemiology, vol. 9, no. 5, pp. 297–305, 1999. View at Google Scholar · View at Scopus
  119. E. Dorant, P. A. Van den Brandt, R. A. Goldbohm, and F. Sturmans, “Consumption of onions and a reduced risk of stomach carcinoma,” Gastroenterology, vol. 110, no. 1, pp. 12–20, 1996. View at Publisher · View at Google Scholar · View at Scopus
  120. K. A. Steinmetz, L. H. Kushi, R. M. Bostick, A. R. Folsom, and J. D. Potter, “Vegetables, fruit, and colon cancer in the Iowa women's health study,” American Journal of Epidemiology, vol. 139, no. 1, pp. 1–15, 1994. View at Google Scholar · View at Scopus
  121. C. M. Gao, T. Takezaki, J. H. Ding, M. S. Li, and K. Tajima, “Protective effect of allium vegetables against both esophageal and stomach cancer: a simultaneous case-referent study of a high-epidemic area in Jiangsu Province, China,” Japanese Journal of Cancer Research, vol. 90, no. 6, pp. 614–621, 1999. View at Google Scholar · View at Scopus
  122. J. L. Colli and C. L. Amling, “Chemoprevention of prostate cancer: what can be recommended to patients?” Current Urology Reports, vol. 10, no. 3, pp. 165–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. A. W. Hsing, A. P. Chokkalingam, Y. T. Gao et al., “Allium vegetables and risk of prostate cancer: a population-based study,” Journal of the National Cancer Institute, vol. 94, no. 21, pp. 1648–1651, 2002. View at Google Scholar · View at Scopus
  124. Y. K. Ji and O. Kwon, “Garlic intake and cancer risk: an analysis using the Food and Drug Administration's evidence-based review system for the scientific evaluation of health claims,” American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 257–264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. H. Boon and J. Wong, “Botanical medicine and cancer: a review of the safety and efficacy,” Expert Opinion on Pharmacotherapy, vol. 5, no. 12, pp. 2485–2501, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. I. Arnault and J. Auger, “Seleno-compounds in garlic and onion,” Journal of Chromatography A, vol. 1112, no. 1-2, pp. 23–30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. N. R. Shenoy and A. S. U. Choughuley, “Inhibitory effect of diet related sulphydryl compounds on the formation of carcinogenic nitrosamines,” Cancer Letters, vol. 65, no. 3, pp. 227–232, 1992. View at Publisher · View at Google Scholar · View at Scopus
  128. J. A. Milner, “Mechanisms by which garlic and allyl sulfur compounds suppress carcinogen bioactivation: garlic and carcinogenesis,” Advances in Experimental Medicine and Biology, vol. 492, pp. 69–81, 2001. View at Google Scholar · View at Scopus
  129. A. A. Powolny and S. V. Singh, “Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organosulfur compounds,” Cancer Letters, vol. 269, no. 2, pp. 305–314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. G. N. Lvova and G. D. Zasukhina, “Modification of repair DNA synthesis in mutagen-treated human fibroblasts during adaptive response and the antimutagenic effect of garlic extract,” Genetika, vol. 38, no. 3, pp. 306–309, 2002. View at Google Scholar · View at Scopus
  131. A. Malki, M. El-Saadani, and A. S. Sultan, “Garlic constituent diallyl trisulfide induced apoptosis in MCF7 human breast cancer cells,” Cancer Biology and Therapy, vol. 8, no. 22, pp. 2175–2185, 2009. View at Google Scholar · View at Scopus
  132. V. L. Sparnins, G. Barany, and L. W. Wattenberg, “Effects of organosulfur compounds from garlic and onions on benzo[a]pyrene-induced neoplasia and glutathione s-transferase activity in the mouse,” Carcinogenesis, vol. 9, no. 1, pp. 131–134, 1988. View at Publisher · View at Google Scholar · View at Scopus
  133. Z. M. Zhang, X. Y. Yang, S. H. Deng, W. Xu, and H. Q. Gao, “Anti-tumor effects of polybutylcyanoacrylate nanoparticles of diallyl trisulfide on orthotopic transplantation tumor model of hepatocellular carcinoma in BALB/c nude mice,” Chinese Medical Journal, vol. 120, no. 15, pp. 1336–1342, 2007. View at Google Scholar · View at Scopus
  134. S. G. Sundaram and J. A. Milner, “Diallyl disulfide induces apoptosis of human colon tumor cells,” Carcinogenesis, vol. 17, no. 4, pp. 669–673, 1996. View at Publisher · View at Google Scholar · View at Scopus
  135. K. Sakamoto, L. D. Lawson, and J. A. Milner, “Allyl sulfides from garlic suppress the in vitro proliferation of human A549 lung tumor cells,” Nutrition and Cancer, vol. 29, no. 2, pp. 152–156, 1997. View at Google Scholar · View at Scopus
  136. C. Welch, L. Wuarin, and N. Sidell, “Antiproliferative effect of the garlic compound S-allyl cysteine on human neuroblastoma cells in vitro,” Cancer Letters, vol. 63, no. 3, pp. 211–219, 1992. View at Publisher · View at Google Scholar · View at Scopus
  137. H. Takeyama, D. S. B. Hoon, R. E. Saxton, D. L. Morton, and R. F. Irie, “Growth inhibition and modulation of cell markers of melanoma by S-allyl cysteine,” Oncology, vol. 50, no. 1, pp. 63–69, 1993. View at Google Scholar · View at Scopus
  138. F. U. Afifi, E. Khalil, and S. Abdalla, “Effect of isoorientin isolated from Arum palaestinum on uterine smooth muscle of rats and guinea pigs,” Journal of Ethnopharmacology, vol. 65, no. 2, pp. 173–177, 1999. View at Publisher · View at Google Scholar · View at Scopus
  139. V. R. Ramprasath and P. J. H. Jones, “Anti-atherogenic effects of resveratrol,” European Journal of Clinical Nutrition, vol. 64, no. 7, pp. 660–668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. I. Durak, R. Çetin, E. Devrim, and I. B. Ergüder, “Effects of black grape extract on activities of dna turn-over enzymes in cancerous and non cancerous human colon tissues,” Life Sciences, vol. 76, no. 25, pp. 2995–3000, 2005. View at Publisher · View at Google Scholar
  141. J. Y. Jo, E. Gonzalez De Mejia, and M. A. Lila, “Catalytic inhibition of human DNA topoisomerase II by interactions of grape cell culture polyphenols,” Journal of Agricultural and Food Chemistry, vol. 54, no. 6, pp. 2083–2087, 2006. View at Publisher · View at Google Scholar · View at Scopus
  142. X. L. Li, Y. Q. Cai, H. Qin, and Y. J. Wu, “Therapeutic effect and mechanism of proanthocyanidins from grape seeds in rats with TNBS-induced ulcerative colitis,” Canadian Journal of Physiology and Pharmacology, vol. 86, no. 12, pp. 841–849, 2008. View at Publisher · View at Google Scholar
  143. A. M. Tuncer, New Hope in Health Foundation, Cancer Report 2010, Asian Pacific Organization for Cancer Prevention, Ankara, Turkey, 2010.
  144. B. Saad, B. S. Abouatta, W. Basha et al., “Hypericum triquetrifolium—derived factors downregulate the production levels of LPS-induced nitric oxide and tumor necrosis factor-α in THP-1 cells,” Evidence-based Complementary and Alternative Medicine, vol. 2011, Article ID 586470, 2011. View at Publisher · View at Google Scholar
  145. D. Al-Johar, N. Shinwari, J. Arif et al., “Role of Nigella sativa and a number of its antioxidant constituents towards azoxymethane-induced genotoxic effects and colon cancer in rats,” Phytotherapy Research, vol. 22, no. 10, pp. 1311–1323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. G. M. Cragg and D. J. Newman, “Plants as a source of anti-cancer agents,” Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 72–79, 2005. View at Publisher · View at Google Scholar · View at Scopus
  147. J. L. Clifford and J. DiGiovanni, “The promise of natural products for blocking early events in skin carcinogenesis,” Cancer Prevention Research, vol. 3, no. 2, pp. 132–135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. H. Vainio and E. Weiderpass, “Fruit and vegetables in cancer prevention,” Nutrition and Cancer, vol. 54, no. 1, pp. 111–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  149. E. J. Park and J. M. Pezzuto, “Botanicals in cancer chemoprevention,” Cancer and Metastasis Reviews, vol. 21, no. 3-4, pp. 231–255, 2002. View at Publisher · View at Google Scholar · View at Scopus
  150. D. J. Kroll, H. S. Shaw, and N. H. Oberlies, “Milk thistle nomenclature: why it matters in cancer research and pharmacokinetic studies,” Integrative Cancer Therapies, vol. 6, no. 2, pp. 110–119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. M. S. Butler and D. J. Newman, “Mother Nature's gifts to diseases of man: the impact of natural products on anti-infective, anticholestemics and anticancer drug discovery,” Progress in Drug Research, vol. 65, pp. 2–44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. G. M. Cragg, P. G. Grothaus, and D. J. Newman, “Impact of natural products on developing new anti-cancer agents,” Chemical Reviews, vol. 109, no. 7, pp. 3012–3043, 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. A. Saklani and S. K. Kutty, “Plant-derived compounds in clinical trials,” Drug Discovery Today, vol. 13, no. 3-4, pp. 161–171, 2008. View at Publisher · View at Google Scholar · View at Scopus