Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 418953, 7 pages
http://dx.doi.org/10.1155/2012/418953
Research Article

Protective Effects of Corni Fructus against Advanced Glycation Endproducts and Radical Scavenging

1Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
2Graduate School of Biomedical Science, Nagasaki University, Nagasaki 852-8521, Japan
3Department of Food Science, Gyeongnam National University of Science and Technology, Gyeongnam 660-758, Republic of Korea
4Department of Oriental Medicine Resources and Research Institute of Korean Oriental Medicines, Sunchon National University, Jeonnam 540-742, Republic of Korea

Received 28 October 2011; Revised 3 February 2012; Accepted 11 February 2012

Academic Editor: Bhushan Patwardhan

Copyright © 2012 Chan Hum Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We investigated the inhibition of advanced glycation endproduct (AGE) activity using the fluorescence characteristics of fractions and compounds from Corni Fructus. Corni Fructus extract and its iridoid glycoside components showed low inhibitory activities as well as the AGE inhibitor aminoguanidine. However, a low molecular weight polyphenol, 7-O-galloyl-D-sedoheptulose, and an antioxidant, trolox, showed high inhibitory activities compared with aminoguanidine under reactive conditions. The AGE-inhibiting activity of polyphenolic fractions of Corni Fructus ranged from a level comparable to Corni Fructus extract to the higher level of 7-O-galloyl-D-sedoheptulose. As well as the results of AGE-inhibiting activity, Corni Fructus extract and iridoid components showed low or no 1,1-diphenyl-2-pycrylhydrazyl (DPPH) radical-scavenging activities, whereas 7-O-galloyl-D-sedoheptulose showed a level comparable to trolox. Polyphenolic fractions of Corni Fructus quenched DPPH radicals in a concentration-dependent manner. Some fractions exerted a higher DPPH radical-scavenging activity compared with trolox and 7-O-galloyl-D-sedoheptulose. The DPPH radical-scavenging activity was significantly correlated with the AGE-inhibiting activity. These results suggest that polyphenolic fractions of Corni Fructus inhibited AGE formation by antioxidant activity including free radical scavenging. The strong DPPH radical-scavenging and AGE-inhibiting fractions included ellagitannins and polymeric proanthocyanidins.