Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 487423, 15 pages
http://dx.doi.org/10.1155/2012/487423
Research Article

Morinda citrifolia (Noni) Juice Augments Mammary Gland Differentiation and Reduces Mammary Tumor Growth in Mice Expressing the Unactivated c-erbB2 Transgene

1Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
2Division of Clinical, Social, and Administrative Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
3Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27127, USA
4Department of Obstetrics & Gynecology, McMaster University, Hamiton, ON, Canada L8S 4K1
5Barnes Center, Center for Applied Research & Intellectual Property Development, Clarion University, 840 Wood Street, Clarion, PA 16214-1232, USA

Received 29 December 2011; Accepted 2 February 2012

Academic Editor: Il-Moo Chang

Copyright © 2012 William P. Clafshenkel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Ernst, “Prevalence of use of complementary/alternative medicine: a systematic review,” Bulletin of the World Health Organization, vol. 78, no. 2, pp. 252–257, 2000. View at Google Scholar · View at Scopus
  2. A. Wanchai, J. M. Armer, and B. R. Stewart, “Complementary and alternative medicine use among women with breast cancer: a systematic review,” Clinical Journal of Oncology Nursing, vol. 14, no. 4, pp. E45–E55, 2010. View at Publisher · View at Google Scholar
  3. M. Y. Wang, B. J. West, C. J. Jensen et al., “Morinda citrifolia (Noni): a literature review and recent advances in Noni research,” Acta Pharmacologica Sinica, vol. 23, no. 12, pp. 1127–1141, 2002. View at Google Scholar · View at Scopus
  4. A. D. Pawlus and A. D. Kinghorn, “Review of the ethnobotany, chemistry, biological activity and safety of the botanical dietary supplement Morinda citrifolia (noni),” Journal of Pharmacy and Pharmacology, vol. 59, no. 12, pp. 1587–1609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. O. Potterat and M. Hamburger, “Morinda citrifolia (Noni) fruit—phytochemistry, pharmacology, safety,” Planta Medica, vol. 73, no. 3, pp. 191–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Liu, A. Bode, W. Y. Ma, S. Sang, C. T. Ho, and Z. Dong, “Two novel glycosides from the fruits of Morinda citrifolia (noni) inhibit AP-1 transactivation and cell transformation in the mouse epidermal JB6 cell line,” Cancer Research, vol. 61, no. 15, pp. 5749–5756, 2001. View at Google Scholar · View at Scopus
  7. M.-Y. Wang, G. L. Anderson, and D. Nowicki, “Preventative effect of Morinda citrifolia (Noni) at the initiation stage of mammary breast carcinogenesis induced by 7,12-dimethylbenzo(a)anthracene (DMBA) in female Sprague-Dawley (SD) rats,” Cancer Epidemiology, Biomarkers & Prevention, vol. 11, p. 1218S, 2002. View at Google Scholar
  8. M. Y. Wang and C. Su, “Cancer preventive effect of Morinda citrifolia (Noni),” Annals of the New York Academy of Sciences, vol. 952, pp. 161–168, 2001. View at Google Scholar · View at Scopus
  9. B. N. Su, A. D. Pawlus, H. A. Jung, W. J. Keller, J. L. McLaughlin, and A. D. Kinghorn, “Chemical constituents of the fruits of Morinda citrifolia (Noni) and their antioxidant activity,” Journal of Natural Products, vol. 68, no. 4, pp. 592–595, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. D. Pawlus, B. N. Su, W. J. Keller, and A. D. Kinghorn, “An anthraquinone with potent quinone reductase-inducing activity and other constituents of the fruits of Morinda citrifolia (Noni),” Journal of Natural Products, vol. 68, no. 12, pp. 1720–1722, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. C. A. Hornick, A. Myers, H. Sadowska-Krowicka, C. T. Anthony, and E. A. Woltering, “Inhibition of angiogenic initiation and disruption of newly established human vascular networks by juice from Morinda citrifolia (noni),” Angiogenesis, vol. 6, no. 2, pp. 143–149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Arpornsuwan and T. Punjanon, “Tumor cell-selective antiproliferative effect of the extract from Morinda citrifolia fruits,” Phytotherapy Research, vol. 20, no. 6, pp. 515–517, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Hirazumi, E. Furusawa, S. C. Chou, and Y. Hokama, “Anticancer activity of Morinda citrifolia (noni) on intraperitoneally implanted Lewis lung carcinoma in syngeneic mice,” Proceedings of the Western Pharmacology Society, vol. 37, pp. 145–146, 1994. View at Google Scholar · View at Scopus
  14. G. D. Stoner, L. S. Wang, C. Seguin et al., “Multiple berry types prevent N-nitrosomethylbenzylamine-induced esophageal cancer in rats,” Pharmaceutical Research, vol. 27, no. 6, pp. 1138–1145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. H. S. Boon, F. Olatunde, and S. M. Zick, “Trends in complementary/alternative medicine use by breast cancer survivors: comparing survey data from 1998 and 2005,” BMC Women's Health, vol. 7, article 4, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. M. Siegel, E. D. Ryan, R. D. Cardiff, and W. J. Muller, “Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer,” EMBO Journal, vol. 18, no. 8, pp. 2149–2164, 1999. View at Google Scholar · View at Scopus
  17. C. T. Guy, M. A. Webster, M. Schaller, T. J. Parsons, R. D. Cardiff, and W. J. Muller, “Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 22, pp. 10578–10582, 1992. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Ménard, P. Aiello, E. Tagliabue et al., “Tamoxifen chemoprevention of a hormone-independent tumor in the proto- neu transgenic mice model,” Cancer Research, vol. 60, no. 2, pp. 273–275, 2000. View at Google Scholar · View at Scopus
  19. E. L. Yu, M. Sivagnanam, L. Ellis, and J. S. Huang, “Acute hepatotoxicity after ingestion of Morinda citrifolia (Noni Berry) juice in a 14-year-old boy,” Journal of Pediatric Gastroenterology and Nutrition, vol. 52, no. 2, pp. 222–224, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Stadlbauer, P. Fickert, C. Lackner et al., “Hepatotoxicity of NONI juice: report of two cases,” World Journal of Gastroenterology, vol. 11, no. 30, pp. 4758–4760, 2005. View at Google Scholar · View at Scopus
  21. G. Millonig, S. Stadlmann, and W. Vogel, “Herbal hepatotoxicity: acute hepatitis caused by a Noni preparation (Morinda citrifolia),” European Journal of Gastroenterology and Hepatology, vol. 17, no. 4, pp. 445–447, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Stadlbauer, S. Weiss, F. Payer, and R. E. Stauber, “Herbal does not at all mean innocuous: the sixth case of hepatotoxicity associated with Morinda citrifolia (Noni),” American Journal of Gastroenterology, vol. 103, no. 9, pp. 2406–2407, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Y. Wang, G. Anderson, D. Nowicki, and J. Jensen, “Hepatic protection by noni fruit juice against CCl4-induced chronic liver damage in female SD rats,” Plant Foods for Human Nutrition, vol. 63, no. 3, pp. 141–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. B. S. Nayak, J. R. Marshall, G. Isitor, and A. Adogwa, “Hypoglycemic and hepatoprotective activity of fermented fruit juice of Morinda citrifolia (noni) in diabetic rats,” Evidence-based Complementary and Alternative Medicine, vol. 2011, Article ID 875293, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. B. A. Mueller, M. K. Scott, K. M. Sowinski, and K. A. Prag, “Noni juice (Morinda citrifolia): hidden potential for hyperkalemia?” American Journal of Kidney Diseases, vol. 35, no. 2, pp. 310–312, 2000. View at Google Scholar · View at Scopus
  26. B. J. West, S. Deng, and C. J. Jensen, “Nutrient and phytochemical analyses of processed noni puree,” Food Research International, vol. 44, pp. 2295–2301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Y. Wang, M. N. Lutfiyya, V. Weidenbacher-Hoper, G. Anderson, C. X. Su, and B. J. West, “Antioxidant activity of noni juice in heavy smokers,” Chemistry Central Journal, vol. 3, no. 1, article 13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Y. Wang, L. Peng, M. N. Lutfiyya, E. Henley, V. Weidenbacher-Hoper, and G. Anderson, “Morinda citrifolia (noni) reduces cancer risk in current smokers by decreasing aromatic DNA adducts,” Nutrition and Cancer, vol. 61, no. 5, pp. 634–639, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. B. J. West, C. X. Su, and C. J. Jensen, “Hepatotoxicity and subchronic toxicity tests of Morinda citrifolia (noni) fruit,” Journal of Toxicological Sciences, vol. 34, no. 5, pp. 581–585, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. B. J. West, L. D. White, C. J. Jensen, and A. K. Palu, “A double-blind clinical safety study of noni fruit juice,” Pacific Health Dialog, vol. 15, no. 2, pp. 21–32, 2009. View at Google Scholar · View at Scopus
  31. V. L. Davis, M. J. Jayo, A. Ho et al., “Black cohosh increases metastatic mammary cancer in transgenic mice expressing c-erbB2,” Cancer Research, vol. 68, no. 20, pp. 8377–8383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Ozono, N. Miyao, T. Igarashi et al., “Tumor doubling time of renal cell carcinoma measured by CT: collaboration of Japanese Society of Renal Cancer,” Japanese Journal of Clinical Oncology, vol. 34, no. 2, pp. 82–85, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Sharmela Inderdeo, D. R. Edwards, V. K. M. Han, and R. Khokha, “Temporal and spatial expression of tissue inhibitors of metalloproteinases during the natural ovulatory cycle of the mouse,” Biology of Reproduction, vol. 55, no. 3, pp. 498–508, 1996. View at Google Scholar · View at Scopus
  34. S. M. Ball, “The development of the terminal end bud in the prepubertal-pubertal mouse mammary gland,” Anatomical Record, vol. 250, no. 4, pp. 459–464, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. P. M. Siegel, D. L. Dankort, W. R. Hardy, and W. J. Muller, “Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumors,” Molecular and Cellular Biology, vol. 14, no. 11, pp. 7068–7077, 1994. View at Google Scholar · View at Scopus
  36. B. Yüce, V. Gülberg, J. Diebold, and A. L. Gerbes, “Hepatitis induced by Noni juice from Morinda citrifolia: a rare cause of hepatotoxicity or the tip of the iceberg?” Digestion, vol. 73, no. 2-3, pp. 167–170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. López-Cepero Andrada, S. Lerma Castilla, M. D. Fernández Olvera, and A. Amaya Vidal, “Hepatotoxicity caused by a Noni (Morinda citrifolia) preparation,” Revista Española de Enfermedades Digestivas, vol. 99, no. 3, pp. 179–181, 2007. View at Google Scholar
  38. E. Anderson, “The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis,” Breast Cancer Research, vol. 4, no. 5, pp. 197–201, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. J. E. Fata, V. Chaudhary, and R. Khokha, “Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17β-estradiol during the estrous cycle,” Biology of Reproduction, vol. 65, no. 3, pp. 680–688, 2001. View at Google Scholar · View at Scopus
  40. P. M. Ismail, P. Amato, S. M. Soyal et al., “Progesterone involvement in breast development and tumorigenesis—as revealed by progesterone receptor “knockout” and “knockin” mouse models,” Steroids, vol. 68, no. 10-13, pp. 779–787, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. E. I. Taşkin, K. Akgün-Dar, A. Kapucu et al., “Apoptosis-inducing effects of Morinda citrifolia L. and doxorubicin on the Ehrlich ascites tumor in Balb-c mice,” Cell Biochemistry and Function, vol. 27, no. 8, pp. 542–546, 2009. View at Publisher · View at Google Scholar
  42. D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire, “Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene,” Science, vol. 235, no. 4785, pp. 177–182, 1987. View at Google Scholar · View at Scopus
  43. M. J. Van de Vijver, J. L. Peterse, W. J. Mooi et al., “Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in Stage II breast cancer,” New England Journal of Medicine, vol. 319, no. 19, pp. 1239–1245, 1988. View at Google Scholar · View at Scopus
  44. K. L. Jones and A. U. Buzdar, “Evolving novel anti-HER2 strategies,” The Lancet Oncology, vol. 10, no. 12, pp. 1179–1187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. G. Sacco, S. Soldati, E. Mira Cató et al., “Combined effects on tumor growth and metastasis by anti-estrogenic and antiangiogenic therapies in MMTV-neu mice,” Gene Therapy, vol. 9, no. 19, pp. 1338–1341, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Bossung and N. Harbeck, “Angiogenesis inhibitors in the management of breast cancer,” Current Opinion in Obstetrics & Gynecology, vol. 22, no. 1, pp. 79–86, 2010. View at Google Scholar · View at Scopus
  47. S. Kosanke, S. M. Edgerton, D. Moore et al., “Mammary tumor heterogeneity in wt-ErbB-2 transgenic mice,” Comparative Medicine, vol. 54, no. 3, pp. 280–287, 2004. View at Google Scholar · View at Scopus
  48. K. Liby, R. Risingsong, D. B. Royce et al., “Prevention and treatment of experimental estrogen receptor- negative mammary carcinogenesis by the synthetic triterpenoid CDDO-methyl ester and the rexinoid LG100268,” Clinical Cancer Research, vol. 14, no. 14, pp. 4556–4563, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Nayak and S. Mengi, “Immunostimulant activity of noni (Morinda citrifolia) on T and B lymphocytes,” Pharmaceutical Biology, vol. 48, no. 7, pp. 724–731, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Hirazumi and E. Furusawa, “An immunomodulatory polysaccharide-rich substance from the fruit juice of Morinda citrifolia (noni) with antitumour activity,” Phytotherapy Research, vol. 13, no. 5, pp. 380–387, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. A. K. Palu, A. H. Kim, B. J. West, S. Deng, J. Jensen, and L. White, “The effects of Morinda citrifolia L. (noni) on the immune system: its molecular mechanisms of action,” Journal of Ethnopharmacology, vol. 115, no. 3, pp. 502–506, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. D. K. Wong, “Are immune responses pivotal to cancer patient's long term survival? Two clinical case-study reports on the effects of Morinda citrifolia (Noni),” Hawaii Medical Journal, vol. 63, no. 6, pp. 182–184, 2004. View at Google Scholar · View at Scopus
  53. E. Furusawa, A. Hirazumi, S. Story, and J. Jensen, “Antitumour Potential of a Polysaccharide-rich Substance from the Fruit Juice of Morinda citrifolia (Noni) on Sarcoma 180 Ascites Tumour in Mice,” Phytotherapy Research, vol. 17, no. 10, pp. 1158–1164, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Li, S. L. Stickel, H. Bouton-Verville et al., “Fermented Noni Exudate (fNE): a mediator between immune system and anti-tumor activity,” Oncology Reports, vol. 20, no. 6, pp. 1505–1509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. R. T. Reilly, M. B. C. Gottlieb, A. M. Ercolini et al., “HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice,” Cancer Research, vol. 60, no. 13, pp. 3569–3576, 2000. View at Google Scholar · View at Scopus
  56. A. M. Ercolini, B. H. Ladle, E. A. Manning et al., “Recruitment of latent pools of high-avidity CD8+ T cells to the antitumor immune response,” Journal of Experimental Medicine, vol. 201, no. 10, pp. 1591–1602, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Singh and Y. Paterson, “In the FVB/N HER-2/neu transgenic mouse both peripheral and central tolerance limit the immune response targeting HER-2/neu induced by Listeria monocytogenes-based vaccines,” Cancer Immunology, Immunotherapy, vol. 56, no. 6, pp. 927–938, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. M. G. Sacco, S. Benedetti, E. Mira Catò et al., “Retrovirus-mediated IL-4 gene therapy in spontaneous adenocarcinomas from MMTV-neu transgenic mice,” Gene Therapy, vol. 6, no. 11, pp. 1893–1897, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Faggioli, S. Soldati, E. Scanziani et al., “Effects of IL-12 gene therapy on spontaneous transgenic and transplanted breast tumors,” Breast Cancer Research and Treatment, vol. 110, no. 2, pp. 223–226, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. L. R. Howe, “Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer,” Breast Cancer Research, vol. 9, no. 4, p. 210, 2007. View at Google Scholar · View at Scopus
  61. D. H. Kang, “Oxidative stress, DNA damage, and breast cancer,” AACN Clinical Issues, vol. 13, no. 4, pp. 540–549, 2002. View at Google Scholar · View at Scopus
  62. E. Dussossoy, P. Brat, E. Bony et al., “Characterization, anti-oxidative and anti-inflammatory effects of Costa Rican noni juice (Morinda citrifolia L.),” Journal of Ethnopharmacology, vol. 133, no. 1, pp. 108–115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. L. R. Howe, S. H. Chang, K. C. Tolle et al., “HER2/neu-induced mammary tumorigenesis and angiogenesis are reduced in cyclooxygenase-2 knockout mice,” Cancer Research, vol. 65, no. 21, pp. 10113–10119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. R. J. Lee, C. Albanese, M. Fu et al., “Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway,” Molecular and Cellular Biology, vol. 20, no. 2, pp. 672–683, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. D. L. Ma, B. J. West, C. X. Su, J. H. Gao, T. Z. Liu, and Y. W. Liu, “Evaluation of the ergogenic potential of noni juice,” Phytotherapy Research, vol. 21, no. 11, pp. 1100–1101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Langford, A. Doughty, M. Wang, L. Clayton, and M. Babich, “Effects of Morinda citrifolia on quality of life and auditory function in postmenopausal women,” Journal of Alternative and Complementary Medicine, vol. 10, no. 5, pp. 737–739, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. B. J. West, C. J. Jensen, and J. Westendorf, “Noni juice is not hepatotoxic,” World Journal of Gastroenterology, vol. 12, no. 22, pp. 3616–3619, 2006. View at Google Scholar · View at Scopus
  68. J. Russo, G. A. Balogh, R. Heulings et al., “Molecular basis of pregnancy-induced breast cancer protection,” European Journal of Cancer Prevention, vol. 15, no. 4, pp. 306–342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Russo, G. A. Balogh, J. Chen et al., “The concept of stem cell in the mammary gland and its implication in morphogenesis, cancer and prevention,” Frontiers in Bioscience, vol. 11, no. 1, pp. 151–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. I. H. Russo and J. Russo, “Role of hormones in mammary cancer initiation and progression,” Journal of Mammary Gland Biology and Neoplasia, vol. 3, no. 1, pp. 49–61, 1998. View at Google Scholar · View at Scopus
  71. S. Chearskul, S. Kooptiwut, S. Chatchawalvanit et al., “Morinda citrifolia has very weak estrogenic activity in vivo,” Thai Journal of Physiological Science, vol. 17, no. 1, pp. 22–29, 2004. View at Google Scholar
  72. P. Cos, T. De Bruyne, S. Apers, D. Vanden Berghe, L. Pieters, and A. J. Vlietinck, “Phytoestrogens: recent developments,” Planta Medica, vol. 69, no. 7, pp. 589–599, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. J. C. Müller, G. G. K. Botelho, A. C. Bufalo et al., “Morinda citrifolia Linn (Noni): in vivo and in vitro reproductive toxicology,” Journal of Ethnopharmacology, vol. 121, no. 2, pp. 229–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. W. McClatchey, “From Polynesian healers to health food stores: changing perspectives of Morinda citrifolia (Rubiaceae),” Integrative Cancer Therapies, vol. 1, no. 2, pp. 110–120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Tundis, M. R. Loizzo, F. Menichini, G. A. Statti, and F. Menichini, “Biological and pharmacological activities of iridoids: recent developments,” Mini-Reviews in Medicinal Chemistry, vol. 8, no. 4, pp. 399–420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Deng, B. J. West, A. K. Palu, and C. J. Jensen, “Determination and comparative analysis of major iridoids in different parts and cultivation sources of Morinda citrifolia,” Phytochemical Analysis, vol. 22, no. 1, pp. 26–30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. N. P. Seeram, “Berry fruits for cancer prevention: current status and future prospects,” Journal of Agricultural and Food Chemistry, vol. 56, no. 3, pp. 630–635, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Iriti and F. Faoro, “Bioactivity of grape chemicals for human health,” Natural Product Communications, vol. 4, no. 5, pp. 611–634, 2009. View at Google Scholar · View at Scopus
  79. L. S. Adams, S. Phung, N. Yee, N. P. Seeram, L. Li, and S. Chen, “Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway,” Cancer Research, vol. 70, no. 9, pp. 3594–3605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. H. S. Aiyer, C. Srinivasan, and R. C. Gupta, “Dietary berries and ellagic acid diminish estrogen-mediated mammary tumorigenesis in ACI rats,” Nutrition and Cancer, vol. 60, no. 2, pp. 227–234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. K. J. Jung, M. A. Wallig, and K. W. Singletary, “Purple grape juice inhibits 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation,” Cancer Letters, vol. 233, no. 2, pp. 279–288, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. K. W. Singletary, M. J. Stansbury, M. Giusti, R. B. Van Breemen, M. Wallig, and A. Rimando, “Inhibition of rat mammary tumorigenesis by concord grape juice constituents,” Journal of Agricultural and Food Chemistry, vol. 51, no. 25, pp. 7280–7286, 2003. View at Publisher · View at Google Scholar · View at Scopus