Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 583479, 7 pages
http://dx.doi.org/10.1155/2012/583479
Research Article

NMDA Receptors of Gastric-Projecting Neurons in the Dorsal Motor Nucleus of the Vagus Mediate the Regulation of Gastric Emptying by EA at Weishu (BL21)

1Neuroscience Program, Shandong University of Traditional Chinese Medicine, Changqing University Park, Jinan 250355, China
2Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, 16 Nanxiaojie, Dongzhimeinei, Beijing 100700, China
3Qingdao Haici Medical Group, 4 Renmin Road, Qingdao 266033, China
4Department of Biomedical Sciences, The Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL32306, USA

Received 11 February 2012; Accepted 24 February 2012

Academic Editor: Gerhard Litscher

Copyright © 2012 Xin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. S. Chang, C. W. Ko, C. Y. Wu, and G. H. Chen, “Effect of electrical stimulation on acupuncture points in diabetic patients with gastric dysrhythmia: a pilot study,” Digestion, vol. 64, no. 3, pp. 184–190, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. C. H. Li and D. Chung, “Primary structure of human β lipotropin,” Nature, vol. 260, no. 5552, pp. 622–624, 1976. View at Google Scholar · View at Scopus
  3. X. Lin, J. Liang, J. Ren, F. Mu, M. Zhang, and J. D. Chen, “Electrical stimulation of acupuncture points enhances gastric myoelectrical activity in humans,” American Journal of Gastroenterology, vol. 92, no. 9, pp. 1527–1530, 1997. View at Google Scholar
  4. H. Ouyang and J. D. Z. Chen, “Review article: therapeutic roles of acupuncture in functional gastrointestinal disorders,” Alimentary Pharmacology and Therapeutics, vol. 20, no. 8, pp. 831–841, 2004. View at Publisher · View at Google Scholar
  5. T. Takahashi, “Acupuncture for functional gastrointestinal disorders,” Journal of Gastroenterology, vol. 41, no. 5, pp. 408–417, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Yin and J. D. Z. Chen, “Gastrointestinal motility disorders and acupuncture,” Autonomic Neuroscience, vol. 157, no. 1-2, pp. 31–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Li, G. Tougas, S. G. Chiverton, and R. H. Hunt, “The effect of acupuncture on gastrointestinal function and disorders,” American Journal of Gastroenterology, vol. 87, no. 10, pp. 1372–1381, 1992. View at Google Scholar · View at Scopus
  8. G. Lux, J. Hagel, P. Bäcker et al., “Acupuncture inhibits vagal gastric acid secretion stimulated by sham feeding in healthy subjects,” Gut, vol. 35, no. 8, pp. 1026–1029, 1994. View at Google Scholar · View at Scopus
  9. H. Y. Kim, O. K. Kwon, and T. C. Nam, “Effect of BL-21 (Wei-Yu) acupoint stimulation on gastric motility following preanesthetic treatment in dogs,” Journal of Veterinary Science, vol. 1, no. 2, pp. 133–138, 2000. View at Google Scholar · View at Scopus
  10. E. Noguchi, “Acupuncture regulates gut motility and secretion via nerve reflexes,” Autonomic Neuroscience, vol. 156, no. 1-2, pp. 15–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Koizumi, A. Sato, and N. Terui, “Role of somatic afferents in autonomic system control of the intestinal motility,” Brain Research, vol. 182, no. 1, pp. 85–97, 1980. View at Publisher · View at Google Scholar · View at Scopus
  12. D. L. Broussard, H. Li, and S. M. Altschuler, “Colocalization of GABA(A) and NMDA receptors within the dorsal motor nucleus of the vagus nerve (DMV) of the rat,” Brain Research, vol. 763, no. 1, pp. 123–126, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. W. H. Panico, N. J. Cavuto, G. Kallimanis et al., “Functional evidence for the presence of nitric oxide synthase in the dorsal motor nucleus of the vagus,” Gastroenterology, vol. 109, no. 5, pp. 1484–1491, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. D. V. Sivarao, Z. K. Krowicki, T. P. Abrahams, and P. J. Hornby, “Vagally-regulated gastric motor activity: evidence for kainate and NMDA receptor mediation,” European Journal of Pharmacology, vol. 368, no. 2-3, pp. 173–182, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. S. H. Yoon, S. S. Sim, S. J. Hahn, D. J. Rhie, Y. H. Jo, and M. S. Kim, “Stimulatory role of the dorsal motor nucleus of the vagus in gastrointestinal motility through myoelectromechanical coordination in cats,” Journal of the Autonomic Nervous System, vol. 57, no. 1-2, pp. 22–28, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. H. S. Feng, R. B. Lynn, J. Han, and F. P. Brooks, “Gastric effects of TRH analogue and bicuculline injected into dorsal motor vagal nucleus in cats,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 259, no. 2, pp. G321–G326, 1990. View at Google Scholar · View at Scopus
  17. D. V. Sivarao, Z. K. Krowicki, and P. J. Hornby, “Role of GABA(A) receptors in rat hindbrain nuclei controlling gastric motor function,” Neurogastroenterology and Motility, vol. 10, no. 4, pp. 305–313, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. R. J. Washabau, M. Fudge, W. J. Price, and F. C. Barone, “GABA receptors in the dorsal motor nucleus of the vagus influence feline lower esophageal sphincter and gastric function,” Brain Research Bulletin, vol. 38, no. 6, pp. 587–594, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. K. N. Browning and R. A. Travagli, “Mechanism of action of baclofen in rat dorsal motor nucleus of the vagus,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 280, no. 6, pp. G1106–G1113, 2001. View at Google Scholar · View at Scopus
  20. M. Iwa, Y. Nakade, T. N. Pappas, and T. Takahashi, “Electroacupuncture improves restraint stress-induced delay of gastric emptying via central glutaminergic pathways in conscious rats,” Neuroscience Letters, vol. 399, no. 1-2, pp. 6–10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Q. Li, B. Zhu, P. J. Rong, H. Ben, and Y. H. Li, “Neural mechanism of acupuncture-modulated gastric motility,” World Journal of Gastroenterology, vol. 13, no. 5, pp. 709–716, 2007. View at Google Scholar · View at Scopus
  22. X. Y. Gao, S. P. Zhang, B. Zhu, and H. Q. Zhang, “Investigation of specificity of auricular acupuncture points in regulation of autonomic function in anesthetized rats,” Autonomic Neuroscience, vol. 138, no. 1-2, pp. 50–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Ishiguchi, T. Amano, H. Matsubayashi, H. Tada, M. Fujita, and T. Takahashi, “Centrally administered neuropeptide Y delays gastric emptying via Y2 receptors in rats,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 281, no. 5, pp. R1522–R1530, 2001. View at Google Scholar · View at Scopus
  24. S. Cheng, Chinese Acupuncture and Moxibustion, Foreign Language Press, Beijing, China, 1996.
  25. K. N. Browning, W. E. Renehan, and R. A. Travagli, “Electrophysiological and morphological heterogeneity of rat dorsal vagal neurones which project to specific areas of the gastrointestinal tract,” Journal of Physiology, vol. 517, no. 2, pp. 521–532, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. K. N. Browning, A. E. Kalyuzhny, and R. A. Travagli, “μ-opioid receptor trafficking on inhibitory synapses in the rat brainstem,” Journal of Neuroscience, vol. 24, no. 33, pp. 7344–7352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. K. Krowicki, K. A. Sharkey, S. C. Serron, N. A. Nathan, and P. J. Hornby, “Distribution of nitric oxide synthase in rat dorsal vagal complex and effects of microinjection of nitric oxide compounds upon gastric motor function,” Journal of Comparative Neurology, vol. 377, no. 1, pp. 49–69, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. R. C. Rogers, G. E. Hermann, and R. A. Travagli, “Brainstem pathways responsible for oesophageal control of gastric motility and tone in the rat,” Journal of Physiology, vol. 514, no. 2, pp. 369–383, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Minami and R. W. McCallum, “The physiology and pathophysiology of gastric emptying in humans,” Gastroenterology, vol. 86, no. 6, pp. 1592–1610, 1984. View at Google Scholar · View at Scopus
  30. T. Haba and S. K. Sarna, “Regulation of gastroduodenal emptying of solids by gastropyloroduodenal contractions,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 264, no. 2, pp. G261–G271, 1993. View at Google Scholar · View at Scopus
  31. B. P. Brown, K. Schulze-Delrieu, J. E. Schrier, and M. M. Abu-Yousef, “The configuration of the human gastroduodenal junction in the separate emptying of liquids and solids,” Gastroenterology, vol. 105, no. 2, pp. 433–440, 1993. View at Google Scholar · View at Scopus
  32. T. Kudo, M. Motojima, and K. Kitazawa, “Depression of gastric contraction by stimulation of BL-19 (Weiyu) acupoints in dogs,” American Journal of Acupuncture, vol. 19, no. 3, pp. 241–245, 1991. View at Google Scholar · View at Scopus
  33. X. Zhang and R. Fogel, “Glutamate mediates an excitatory influence of the paraventricular hypothalamic nucleus on the dorsal motor nucleus of the vagus,” Journal of Neurophysiology, vol. 88, no. 1, pp. 49–63, 2002. View at Google Scholar · View at Scopus
  34. A. Willis, M. Mihalevich, R. A. Neff, and D. Mendelowitz, “Three types of postsynaptic glutamatergic receptors are activated in DMNX neurons upon stimulation of NTS,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 271, no. 6, pp. R1614–R1619, 1996. View at Google Scholar · View at Scopus