Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 638197, 7 pages
Research Article

A Herbal Composition of Semen Hoveniae, Radix Puerariae, and Fructus Schisandrae Shows Potent Protective Effects on Acute Alcoholic Intoxication in Rodent Models

1Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, China
2Research and Development Center, Jing Brand Co., Ltd., Huangshi 435100, China
3Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071, China

Received 25 March 2012; Revised 10 June 2012; Accepted 17 June 2012

Academic Editor: Khalid Rahman

Copyright © 2012 Jie Xiong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This study is designed to evaluate the effects of a herbal composition of Semen Hoveniae, Radix Puerariae and Fructus Schisandrae (SRF) against acute alcoholic intoxication. The animals were treated with SRF extract (SRFE) for 14 days, and ethanol was conducted subsequent to the final treatment. The effects of SRFE on righting reflex, inebriety rates, kinetic parameters of blood ethanol and acetaldehyde were determined. In addition; levels of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), the activities of cytochrome P450 2E1 (CYP2E1), selected antioxidative enzymes, and the contents of malonaldehyde (MDA) were measured. SRFE-pretreated rodents exhibited lower rates of intoxication, longer times to loss of righting reflex, and shortened times to recovery of righting reflex than in controls. The peak concentrations and area under the time-concentration curves were lower in the pretreated animals than in controls, which corresponded to higher levels of ADH and ALDH in both gastrointestines and livers of the SRFE-treated animals. The activities of CYP2E1 were lower in SRFE-pretreated animals, which also exhibited higher activities of some antioxidant enzymes and lower hepatic MDA levels. These findings suggest that the anti-inebriation effects of SRFE may involve inhibition of ethanol absorption, promotion of ethanol metabolism, and enhancing hepatic anti-oxidative functions.