Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 656150, 11 pages
Research Article

Guizhi-Fuling-Wan, a Traditional Chinese Herbal Medicine, Ameliorates Memory Deficits and Neuronal Apoptosis in the Streptozotocin-Induced Hyperglycemic Rodents via the Decrease of Bax/Bcl2 Ratio and Caspase-3 Expression

1Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
2Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
3Department of Pharmacy, China Medical University Hospital, Taichung 40421, Taiwan
4Department of Pharmacology, University of Minnesota and Geriatric Research, Education and Clinical Center, VA Medical Center, Minneapolis, MN 55455, USA

Received 14 July 2012; Revised 24 September 2012; Accepted 8 October 2012

Academic Editor: Shuang-En Chuang

Copyright © 2012 Kuo-Jen Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Brain neuronal apoptosis and cognitive impairment are associated with hyperglycemia and diabetes mellitus. The present study determined if the Chinese herbal medicine Guizhi-Fuling-Wan (GFW) would reduce memory loss and neuronal apoptosis in streptozotocin- (STZ-) induced hyperglycemic rodents. Two weeks after STZ induction, GFW was orally administered once daily for 7 days. GFW significantly improved spatial memory deficits in STZ-induced hyperglycemic mice. GFW decreased TUNEL-positive cells and caspase-3 positive cells in STZ-induced hyperglycemic rats. It also was found that GFW treatment reduced caspase-3 protein levels and increased levels of the antiapoptotic protein Bcl-2 that were indicative of neuroprotection. The protective therapeutic effects of GFW on neuronal apoptosis and cognition deficits caused by STZ-induced hyperglycemia may be due in part to inhibition of the cellular apoptosis pathway. GFW may have therapeutic effects in patients with diabetes-mellitus-induced neuropathology.