Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 703034, 12 pages
http://dx.doi.org/10.1155/2012/703034
Research Article

Jaceosidin Induces Apoptosis in U87 Glioblastoma Cells through G2/M Phase Arrest

1Membrane Channel Research Laboratory, Northeast Normal University, Changchun 130024, China
2College of Life Sciences, Liaoning Normal University, Dalian 116029, China
3Second Clinical Hospital, Jilin University, Changchun 130041, China

Received 14 June 2011; Revised 8 September 2011; Accepted 15 September 2011

Academic Editor: Alfred Längler

Copyright © 2012 Muhammad Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Kim, H. K. Kim, S. B. Jeon et al., “New sesquiterpene-monoterpene lactone, artemisolide, isolated from Artemisia argyi,” Tetrahedron Letters, vol. 43, no. 35, pp. 6205–6208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. S. H. Lee, M. Y. Lee, H. M. Kang et al., “Anti-tumor activity of the farnesyl-protein transferase inhibitors arteminolides, isolated from Artemisa,” Bioorganic and Medicinal Chemistry, vol. 11, no. 21, pp. 4545–4549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. R. X. Tan, W. F. Zheng, and H. Q. Tang, “Biologically active substances from the genus Artemisia,” Planta Medica, vol. 64, no. 4, pp. 295–302, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. R. X. Tan, H. Q. Tang, J. Hu, and B. Shuai, “Lignans and sesquiterpene lactones from Artemisia sieversiana and Inula racemosa,” Phytochemistry, vol. 49, no. 1, pp. 157–161, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. K. D. Yoon, Y. W. Chin, M. H. Yang, and J. Kim, “Separation of anti-ulcer flavonoids from Artemisia extracts by high-speed countercurrent chromatography,” Food Chemistry, vol. 129, no. 2, pp. 679–683, 2011. View at Publisher · View at Google Scholar
  6. A. J. Min, W. L. Ki, D. Y. Yoon, and J. L. Hyong, “Jaceosidin, a pharmacologically active flavone derived from Artemisia argyi, inhibits phorbol-ester-induced upregulation of COX-2 and MMP-9 by blocking phosphorylation of ERK-1 and -2 in cultured human mammary epithelial cells,” Annals of the New York Academy of Sciences, vol. 1095, pp. 458–466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. H. G. Lee, K. A. Yu, W. K. Oh et al., “Inhibitory effect of jaceosidin isolated from Artemisia argyi on the function of E6 and E7 oncoproteins of HPV 16,” Journal of Ethnopharmacology, vol. 98, no. 3, pp. 339–343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Kim, D. H. Kim, W. L. Ki, D. Y. Yoon, and Y. J. Surh, “Jaceosidin induces apoptosis in ras-transformed human breast epithelial cells through generation of reactive oxygen species,” Annals of the New York Academy of Sciences, vol. 1095, pp. 483–495, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Lv, X. Sheng, T. Chen, Q. Xu, and X. Xie, “Jaceosidin induces apoptosis in human ovary cancer cells through mitochondrial pathway,” Journal of Biomedicine & Biotechnology, vol. 2008, p. 394802, 2008. View at Google Scholar · View at Scopus
  10. Y. B. Ji, Z. Y. Qu, and X. Zou, “Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway,” Experimental and Toxicologic Pathology, vol. 63, no. 1-2, pp. 69–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Martínez, O. Barberá, J. Sánchez-Parareda, and J. A. Marco, “Phenolic and acetylenic metabolites from Artemisia assoana,” Phytochemistry, vol. 26, no. 9, pp. 2619–2624, 1987. View at Google Scholar
  12. Y. J. Lu, S. H. Yang, C. M. Chien et al., “Induction of G2/M phase arrest and apoptosis by a novel enediyne derivative, THDB, in chronic myeloid leukemia (HL-60) cells,” Toxicology in Vitro, vol. 21, no. 1, pp. 90–98, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Torres and S. B. Horwitz, “Mechanisms of taxol-induced cell death are concentration dependent,” Cancer Research, vol. 58, no. 16, pp. 3620–3626, 1998. View at Google Scholar · View at Scopus
  14. L. Gamet-Payrastre, P. Li, S. Lumeau et al., “Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells,” Cancer Research, vol. 60, no. 5, pp. 1426–1433, 2000. View at Google Scholar · View at Scopus
  15. A. W. Murray, “Recycling the cell cycle: cyclins revisited,” Cell, vol. 116, no. 2, pp. 221–234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. D. K. Orren, L. N. Petersen, and V. A. Bohr, “Persistent DNA damage inhibits S-phase and G2 progression, and results in apoptosis,” Molecular Biology of the Cell, vol. 8, no. 6, pp. 1129–1142, 1997. View at Google Scholar · View at Scopus
  17. K. Fujimoto, R. Hosotani, R. Doi et al., “Induction of cell-cycle arrest and apoptosis by a novel retinobenzoic- acid derivative, TAC-101, in human pancreatic-cancer cells,” International Journal of Cancer, vol. 81, no. 4, pp. 637–644, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. W. R. Taylor and G. R. Stark, “Regulation of the G2/M transition by p53,” Oncogene, vol. 20, no. 15, pp. 1803–1815, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. S. C. W. Luk, S. W. F. Siu, C. K. Lai, Y. J. Wu, and S. F. Pang, “Cell cycle arrest by a natural product via G2/M checkpoint,” International Journal of Medical Sciences, vol. 2, no. 2, pp. 64–69, 2005. View at Google Scholar · View at Scopus
  20. H. Yamaguchi, J. Chen, K. Bhalla, and H. G. Wang, “Regulation of Bax activation and apoptotic response to microtubule-damaging agents by p53 transcription-dependent and -independent pathways,” Journal of Biological Chemistry, vol. 279, no. 38, pp. 39431–39437, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Vogelstein, D. Lane, and A. J. Levine, “Surfing the p53 network,” Nature, vol. 408, no. 6810, pp. 307–310, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. R. W. Johnstone, A. A. Ruefli, and S. W. Lowe, “Apoptosis: a link between cancer genetics and chemotherapy,” Cell, vol. 108, no. 2, pp. 153–164, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Fei and W. S. El-Deiry, “P53 and radiation responses,” Oncogene, vol. 22, no. 37, pp. 5774–5783, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. K. T. Chan, F. Y. Meng, Q. Li et al., “Cucurbitacin B induces apoptosis and S phase cell cycle arrest in BEL-7402 human hepatocellular carcinoma cells and is effective via oral administration,” Cancer Letters, vol. 294, no. 1, pp. 118–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. L. Agarwal, A. Agarwal, W. R. Taylor, O. Chernova, Y. Sharma, and G. R. Stark, “A p53-dependent S-phase checkpoint helps to protect cells from DNA damage in response to starvation for pyrimidine nucleotides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14775–14780, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. G. Yang, A. Q. Chen, and B. Liu, “Antiproliferation and apoptosis induced by evodiamine in human colorectal carcinoma cells (COLO-205),” Chemistry and Biodiversity, vol. 6, no. 6, pp. 924–933, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Lahiry, B. Saha, J. Chakraborty et al., “Contribution of p53-mediated Bax transactivation in theaflavin-induced mammary epithelial carcinoma cell apoptosis,” Apoptosis, vol. 13, no. 6, pp. 771–781, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Roy, A. Ganguly, S. BoseDasgupta et al., “Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3′-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani,” Molecular Pharmacology, vol. 74, no. 5, pp. 1292–1307, 2008. View at Publisher · View at Google Scholar · View at Scopus