Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 741925, 10 pages
http://dx.doi.org/10.1155/2012/741925
Research Article

Effects of Brugmansia arborea Extract and Its Secondary Metabolites on Morphine Tolerance and Dependence in Mice

1Pharmacognosy Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
2Department of Pharmaceutical and Biomedical Science, University of Salerno, Via Ponte don Melillo, 84084 Fisciano, Italy

Received 24 September 2011; Revised 23 October 2011; Accepted 23 October 2011

Academic Editor: Raffaele Capasso

Copyright © 2012 Laura Mattioli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. De Feo, “The ritual use of Brugmansia species in traditional andean medicine in Northern Peru,” Economic Botany, vol. 58, pp. S221–S229, 2004. View at Google Scholar · View at Scopus
  2. O. E. Roses, C. M. Lopez, and J. C. Garcia Fernandez, “Aislamiento e identificación de alcaloides del tropano en especies del género Brugmansia (Solanaceae),” Acta Farmacéutica Bonaerense, vol. 6, pp. 167–174, 1987. View at Google Scholar
  3. A. Capasso, V. De Feo, F. De Simone, and L. Sorrentino, “Activity-directed isolation of spasmolytic (anti-cholinergic) alkaloids from Brugmansia arborea (L.) Lagerheim,” International Journal of Pharmacognosy, vol. 35, no. 1, pp. 43–48, 1997. View at Google Scholar · View at Scopus
  4. A. Capasso and V. De Feo, “Central nervous system pharmacological effects of plants from northern Peruvian Andes: Valeriana adscendens, Iresine herbstii and Brugmansia arborea,” Pharmaceutical Biology, vol. 40, no. 4, pp. 274–293, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Nencini, F. Cavallo, G. Bruni et al., “Affinity of Iresine herbstii and Brugmansia arborea extracts on different cerebral receptors,” Journal of Ethnopharmacology, vol. 105, no. 3, pp. 352–357, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. A. Capasso and V. De Feo, “In vitro binding receptors study by Valeriana adscendens, Iresine herbstii and Brugmansia arborea extracts,” Medicinal Chemistry, vol. 3, no. 6, pp. 599–604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Capasso and V. De Feo, “Alkaloids from Brugmansia arborea (L.) Lagerhein reduce morphine withdrawal in vitro,” Phytotherapy Research, vol. 17, no. 7, pp. 826–829, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. H. W. Avdovich and G. A. Neville, “Carbon-13 NMR spectroscopy of atropine analogs and cocaine,” Canadian Journal of Spectroscopy, vol. 28, pp. 1–8, 1983. View at Google Scholar
  9. A. A. Naqvi, S. Mandal, and R. K. Verma, “Determination of atropine and scopolamine by proton nuclear magnetic resonance spectroscopy,” Phytochemical Analysis, vol. 9, no. 4, pp. 168–170, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. A. O. Abdel-Zaher, M. M. Hamdy, S. A. Aly, R. H. Abdel-Hady, and S. Abdel-Rahman, “Attenuation of morphine tolerance and dependence by aminoguanidine in mice,” European Journal of Pharmacology, vol. 540, no. 1–3, pp. 60–66, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. L. Mattioli and M. Perfumi, “Effects of a Rhodiola rosea L. extract on acquisition and expression of morphine tolerance and dependence in mice,” Journal of Psychopharmacology, vol. 25, no. 3, pp. 411–420, 2011. View at Publisher · View at Google Scholar · View at PubMed
  12. X. Ren, Y. Noda, T. Mamiya, T. Nagai, and T. Nabeshima, “A neuroactive steroid, dehydroepiandrosterone sulfate, prevents the development of morphine dependence and tolerance via c-fos expression linked to the extracellular signal-regulated protein kinase,” Behavioural Brain Research, vol. 152, no. 2, pp. 243–250, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. T. Doncheva, S. Berkov, and S. Philipov, “Comparative study of the alkaloids in tribe Datureae and their chemosystematic significance,” Biochemical Systematics and Ecology, vol. 34, no. 6, pp. 478–488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. G. F. Koob, L. Stinus, M. Le Moal, and F. E. Bloom, “Opponent process theory of motivation: neurobiological evidence from studies of opiate dependence,” Neuroscience and Biobehavioral Reviews, vol. 13, no. 2-3, pp. 135–140, 1989. View at Google Scholar · View at Scopus
  15. X. H. Xiang, H. L. Wang, W. R. Wu et al., “Ethological analysis of scopolamine treatment or pretreatment in morphine dependent rats,” Physiology and Behavior, vol. 88, no. 1-2, pp. 183–190, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. G. Yang, K. Xu, and Q. Luo, “Clinical study of scopolamine detoxification for the treatment of heroin addicts,” Zhonghua yi Xue za Zhi, vol. 76, no. 2, pp. 141–144, 1996. View at Google Scholar
  17. G. Yang, W. Zhou, and K. Xu, “The combined use of scopolamine, naltrexone and naloxone as a rapid, safe and effective detoxification treatment for heroin addicts,” Zhonghua yi Xue za Zhi, vol. 79, no. 9, pp. 679–682, 1999. View at Google Scholar
  18. M.-R. Zarrindast, Z. Fattahi, P. Rostami, and A. Rezayof, “Role of the cholinergic system in the rat basolateral amygdala on morphine-induced conditioned place preference,” Pharmacology Biochemistry and Behavior, vol. 82, no. 1, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at PubMed
  19. H. Zhou, X. Ge, L. Z. Wang, L. Ma, and G. Pei, “Attenuation of morphine tolerance and dependence in scopolamine-treated rats,” NeuroReport, vol. 10, no. 10, pp. 2007–2010, 1999. View at Google Scholar · View at Scopus
  20. R. B. Raffa, “The M5 muscarinic receptor as possible target for treatment of drug abuse,” Journal of Clinical Pharmacy and Therapeutics, vol. 34, no. 6, pp. 623–629, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. T. Antonelli, L. Beani, and C. Bianchi, “Cortical acetylcholine release is increased and γ-aminobutyric acid outflow is reduced during morphine withdrawal,” British Journal of Pharmacology, vol. 89, no. 4, pp. 853–860, 1986. View at Google Scholar
  22. Z. B. You, B. Wang, D. Zitzman, and R. A. Wise, “Acetylcholine release in the mesocorticolimbic dopamine system during cocaine seeking: conditioned and unconditioned contributions to reward and motivation,” Journal of Neuroscience, vol. 28, no. 36, pp. 9021–9029, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. E. H. Chartoff, M. F. Barhight, S. D. Mague, A. M. Sawyer, and W. A. Carlezon Jr., “Anatomically dissociable effects of dopamine D1 receptor agonists on reward and relief of withdrawal in morphine-dependent rats,” Psychopharmacology, vol. 204, no. 2, pp. 227–239, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. E. H. Chartoff, S. D. Mague, M. F. Barhight, A. M. Smith, and W. A. Carlezon Jr., “Behavioral and molecular effects of dopamine D1 receptor stimulation during naloxone-precipitated morphine withdrawal,” Journal of Neuroscience, vol. 26, no. 24, pp. 6450–6457, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. G. C. Harris and G. Aston-Jones, “Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome,” Nature, vol. 371, no. 6493, pp. 155–157, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus