Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2012, Article ID 743107, 10 pages
http://dx.doi.org/10.1155/2012/743107
Research Article

Effects of Extract from Solid-State Fermented Cordyceps sinensis on Type 2 Diabetes Mellitus

1Division of Nephrology, Department of Medicine, Chi-Mei Medical Center, Tainan 71004, Taiwan
2Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
3Department of Sport Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
4Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
5Institute of Biotechnology, Southern Taiwan University, Tainan 71005, Taiwan
6Institute of Biomedical Engineering, Southern Taiwan University, Tainan 71005, Taiwan
7Department of Family Medicine, Chi-Mei Medical Center, Tainan 71004, Taiwan
8Department of Nephrology, Sin-Lau Hospital, Tainan 70142, Taiwan
9Department of Pharmacy, Wei Gong Memorial Hospital, Miaoli 35159, Taiwan

Received 10 June 2011; Accepted 7 December 2011

Academic Editor: E. Yesilada

Copyright © 2012 Wei-Chih Kan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Winer and J. R. Sowers, “Epidemiology of diabetes,” Journal of Clinical Pharmacology, vol. 44, no. 4, pp. 397–405, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. D. Deshpande, M. Harris-Hayes, and M. Schootman, “Epidemiology of diabetes and diabetes-related complications,” Physical Therapy, vol. 88, no. 11, pp. 1254–1264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. M. Reaven, “Insulin resistance, the insulin resistance syndrome, and cardiovascular disease,” Panminerva Medica, vol. 47, no. 4, pp. 201–210, 2005. View at Google Scholar · View at Scopus
  4. Z. T. Bloomgarden, “Definitions of the insulin resistance syndrome: the 1st World Congress on the Insulin Resistance Syndrome,” Diabetes Care, vol. 27, no. 3, pp. 824–830, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Chen and M. W. Wang, “Development and application of rodent models for type 2 diabetes,” Diabetes, Obesity and Metabolism, vol. 7, no. 4, pp. 307–317, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. S. Islam and D. T. Loots, “Experimental rodent models of type 2 diabetes: a review,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 31, no. 4, pp. 249–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Srinivasan and P. Ramarao, “Animal models in type 2 diabetes research: an overview,” Indian Journal of Medical Research, vol. 125, no. 3, pp. 451–472, 2007. View at Google Scholar · View at Scopus
  8. D. Accili, Y. Kido, J. Nakae, D. Lauro, and B. C. Park, “Genetics of type 2 diabetes: insight from targeted mouse mutants,” Current Molecular Medicine, vol. 1, no. 1, pp. 9–23, 2001. View at Google Scholar · View at Scopus
  9. H. Karasawa, S. Nagata-Goto, K. Takaishi, and Y. Kumagae, “A novel model of type 2 diabetes mellitus based on obesity induced by high-fat diet in BDF1 mice,” Metabolism, vol. 58, no. 3, pp. 296–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Terauchi and T. Kadowaki, “Insights into molecular pathogenesis of type 2 diabetes from knockout mouse models,” Endocrine Journal, vol. 49, no. 3, pp. 247–263, 2002. View at Google Scholar · View at Scopus
  11. R. R. M. Paterson, “Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory?” Phytochemistry, vol. 69, no. 7, pp. 1469–1495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Zhou, Z. Gong, Y. Su, J. Lin, and K. Tang, “Cordyceps fungi: natural products, pharmacological functions and developmental products,” Journal of Pharmacy and Pharmacology, vol. 61, no. 3, pp. 279–291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Kiho, J. Hui, A. Yamane, and S. Ukai, “Polysaccharides in Fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis,” Biological and Pharmaceutical Bulletin, vol. 16, no. 12, pp. 1291–1293, 1993. View at Google Scholar · View at Scopus
  14. T. Kiho, K. Ookubo, S. Usui, S. Ukai, and K. Hirano, “Structural features and hypoglycemic activity of a polysaccharide (CS-F10) from the cultured mycelium of Cordyceps sinensis,” Biological and Pharmaceutical Bulletin, vol. 22, no. 9, pp. 966–970, 1999. View at Google Scholar · View at Scopus
  15. J. Y. Guo, C. C. Han, and Y. M. Liu, “A contemporary treatment approach to both diabetes and depression by Cordyceps sinensis, Rich in Vanadium,” Evidence-Based Complementary and Alternative Medicine, vol. 7, no. 3, pp. 387–389, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. H. C. Lo, S. T. Tu, K. C. Lin, and S. C. Lin, “The anti-hyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin,” Life Sciences, vol. 74, no. 23, pp. 2897–2908, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. H. C. Lo, T. H. Hsu, S. T. Tu, and K. C. Lin, “Anti-hyperglycemic activity of natural and fermented Cordyceps sinensis in rats with diabetes induced by nicotinamide and streptozotocin,” American Journal of Chinese Medicine, vol. 34, no. 5, pp. 819–832, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Zhang, X. Zou, G. Leluo, J. Xu, and M. Xiang, “Prevention of type 1 diabetes by immature dendritic cells treated with an ethanol extract of Paecilomyces hepiali Chen mycelium,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 30, no. 6, pp. 421–429, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Zhang, X. Wang, Y. Zhang, and G. Ye, “Effect of Cordyceps sinensis on renal function of patients with chronic allograft nephropathy,” Urologia Internationalis, vol. 86, no. 3, pp. 298–301, 2011. View at Publisher · View at Google Scholar
  20. R. Tang, Q. Zhou, J. Shu et al., “Effect of Cordyceps sinensis extract on Klotho expression and apoptosis in renal tubular epithelial cells induced by angiotensin II,” Journal of Central South University, vol. 34, no. 4, pp. 300–307, 2009. View at Google Scholar · View at Scopus
  21. T. W. Balon, A. P. Jasman, and J. S. Zhu, “A fermentation product of Cordyceps sinensis increases whole-body insulin sensitivity in rats,” Journal of Alternative and Complementary Medicine, vol. 8, no. 3, pp. 315–323, 2002. View at Google Scholar · View at Scopus
  22. X. Zhang, Y. K. Liu, Q. Zheng, W. Shen, and D. M. Shen, “Influence of Cordyceps sinensis on pancreatic islet beta cells in rats with experimental liver fibrogenesis,” Zhonghua Gan Zang Bing Za Zhi, vol. 11, no. 2, pp. 93–94, 2003. View at Google Scholar · View at Scopus
  23. G. Hsiao, J. Chapman, J. M. Ofrecio et al., “Multi-tissue, selective PPARγ modulation of insulin sensitivity and metabolic pathways in obese rats,” American Journal of Physiology, vol. 300, no. 1, pp. E164–E174, 2011. View at Publisher · View at Google Scholar
  24. R. Balasubramanian, J. Gerrard, C. Dalla Man et al., “Combination peroxisome proliferator-activated receptor γ and α agonist treatment in Type 2 diabetes prevents the beneficial pioglitazone effect on liver fat content,” Diabetic Medicine, vol. 27, no. 2, pp. 150–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. L. Mollah, G. S. Kim, H. K. Moon et al., “Antiobesity effects of wild ginseng (Panax ginseng C.A. meyer) mediated by PPAR-γ, GLUT4 and LPL in ob/ob mice,” Phytotherapy Research, vol. 23, no. 2, pp. 220–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. K. L. Svenson, R. Von Smith, P. A. Magnani et al., “Multiple trait measurements in 43 inbred mouse strains capture the phenotypic diversity characteristic of human populations,” Journal of Applied Physiology, vol. 102, no. 6, pp. 2369–2378, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Y. Polotsky, “Mouse model of the metabolic syndrome: the quest continues,” Journal of Applied Physiology, vol. 102, no. 6, pp. 2088–2089, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Qi, H. Fujita, J. Jin et al., “Characterization of susceptibility of inbred mouse strains to diabetic nephropathy,” Diabetes, vol. 54, no. 9, pp. 2628–2637, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. B. L. Wajchenberg, “β-cell failure in diabetes and preservation by clinical treatment,” Endocrine Reviews, vol. 28, no. 2, pp. 187–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Del Prato and N. Pulizzi, “The place of sulfonylureas in the therapy for type 2 diabetes mellitus,” Metabolism, vol. 55, no. 1, pp. S20–S27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Matsuda, F. Kawasaki, Y. Mikami et al., “Rescue of beta-cell exhaustion by diazoxide after the development of diabetes mellitus in rats with streptozotocin-induced diabetes,” European Journal of Pharmacology, vol. 453, no. 1, pp. 141–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Walter and G. Lübben, “Potential role of oral thiazolidinedione therapy in preserving β-cell function in type 2 diabetes mellitus,” Drugs, vol. 65, no. 1, pp. 1–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. B. L. Wajchenberg, “Clinical approaches to preserve beta-cell function in diabetes,” Advances in Experimental Medicine and Biology, vol. 654, pp. 515–535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. United States Renal Data System. USRDS annual data report, 2009, http://www.usrds.org.
  35. D. Raccah, M. F. Lamotte-Jannot, T. Issautier, and P. Vague, “Effect of experimental diabetes on Na/K-ATPase activity in red blood cells, peripheral nerve and kidney,” Diabete et Metabolisme, vol. 20, no. 3, pp. 271–274, 1994. View at Google Scholar · View at Scopus
  36. M. Tsimarato, T. C. Coste, A. Djemli-Shipkolye et al., “Evidence of time-dependent changes in renal medullary Na,K-ATPase activity and expression in diabetic rats,” Cellular and Molecular Biology, vol. 47, no. 2, pp. 239–245, 2001. View at Google Scholar · View at Scopus
  37. M. A. Gallicchio and L. A. Bach, “Advanced glycation end products inhibit Na+ K+ ATPase in proximal tubule epithelial cells: role of cytosolic phospholipase A2α and phosphatidylinositol 4-phosphate 5-kinase γ,” Biochimica et Biophysica Acta, vol. 1803, no. 8, pp. 919–930, 2010. View at Publisher · View at Google Scholar
  38. M. F. Jannot, D. Raccah, D. D. De La Tour, T. Coste, and P. Vague, “Genetic and environmental regulation of Na/K adenosine triphosphatase activity in diabetic patients,” Metabolism, vol. 51, no. 3, pp. 284–291, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Vague, T. C. Coste, M. F. Jannot, J. D. Raccah, and M. Tsimaratos, “C-peptide, Na+,K+-ATPase, and diabetes,” Experimental Diabesity Research, vol. 5, no. 1, pp. 37–50, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. M. Shahid and T. Mahboob, “Electrolytes and Na+-K+-ATPase: potential risk factors for the development of diabetic nephropathy,” Pakistan Journal of Pharmaceutical Sciences, vol. 21, no. 2, pp. 172–179, 2008. View at Google Scholar · View at Scopus